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Abstract

We estimate the long-term e↵ect of public R&D on growth in manufacturing by
analyzing new data from the Cold War era Space Race. We develop a novel empirical
strategy that leverages US-Soviet rivalry in space technology to isolate windfall R&D
spending. Our results demonstrate substantial e↵ects of public R&D on economic
growth - implying a social rate of return to public R&D above 20%. While migration
responses were important, they were not su�cient to generate a wedge between local
and national long-term e↵ects. The iconic Moonshot R&D program had first order
economic e↵ects for both local and national economies.
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1 Introduction

Technological progress plays a central role in theories of economic growth (Solow 1957,

Romer 1990, Aghion and Howitt 1992). Because social returns to research and development

may be larger than private returns, firms may underinvest in innovation, thus reducing the

rate of technological progress (Arrow 1962, Griliches 1992, Bloom, Schankerman, and Van

Reenen 2013). Can government-funded R&D fill this gap and generate long-term growth?

Despite the fact that governments expend significant resources on R&D every year – over

$158 billion in the OECD in 2020 (OECD 2022) – the answer remains unclear.

In this paper we provide new evidence on the e↵ects of public R&D on long-term economic

growth by analyzing a unique episode in U.S. history – the race to beat the Soviet Union to

the Moon during the 1960s. The shock of the Soviet launch of the first satellite Sputnik in

1957 led to a geopolitical crisis that initiated the creation of the National Aeronautics and

Space Administration (NASA) in 1958 and launched the race to the Moon in 1961. Figure

1 shows that the ambitious mission to send (and return) a manned crew to (and from) the

Moon led to a massive expansion of federal investment in R&D – NASA received over 0.7

percent of GDP in the mid-1960s (Weinzierl 2018) and employed over 400,000 workers at

the peak of the Space Race.

We analyze the e↵ects of this R&D windfall on growth in manufacturing in the short-

and long-terms. Focusing on manufacturing growth is likely to capture the indirect e↵ects of

space R&D well because getting to the Moon not only required new ideas and technologies,

but also the production of real products. Innovations of the Space Race era were embodied,

for example, in spacecraft, satellites, thrusters, navigation and communications equipment,

computer software and hardware, and launch infrastructure. In fact, manufacturing firms

accounted for over 87% of NASA contractor spending during the Space Race. Thus, the

spillover e↵ects of the space program’s R&D were likely manifest significantly in manufac-

turing.

To estimate our models we develop a novel empirical approach to isolate the exogenous

variation in NASA R&D. The imperative to win the Space Race meant that NASA was

compelled to rapidly allocate funding to producers already specialized in the technological

building blocks needed to complete the mission. NASA did not invest in technologies ran-

domly, but sought to harvest any promising space technologies that could be supplied by

American firms to win the race to the Moon. We address technology harvesting in two steps.

1



We first utilize the CIA’s declassified National Intelligence Estimates of Soviet Space Tech-

nology (NIE) from the post-Sputnik era to define the set of technologies demanded by the

space mission. We then search for these technologies in U.S. patents before 1958 to determine

which U.S. counties specialized in space-relevant technologies before the Space Race began.

We term counties as “Space Places” if their pre-1958 technological specialization matched

post-1958 space technology demand, as seen through the perspective of the Soviet space

program not NASA’s. Isolating variation in NASA R&D that is virtually independent of

location-specific unobservables, our research design compares changes in outcomes between

space places that benefited from the geopolitical windfall R&D relative to other counties.

To carry out our empirical analysis we construct a new panel dataset containing highly

granular data on U.S. manufacturing and NASA activity for over 790 counties from 1947

to 1992. For each county we have digitized the amount that NASA contractors received

and that NASA spent directly on its own operations. We then match this information to

manufacturing value added, employment, and labor income from the Census of Manufactures

at the county ⇥ 2-digit industry level to estimate our models. We also utilize newly-available

data on NASA ownership and funding of patents from Fleming, et al. (2019).

A first suggestive look at state-level correlations in Figure 2 reveals that states with more

NASA activity experienced larger increases in value added and employment. Our analysis

that addresses potential endogenenity of NASA’s spending decisions reveals five main results.

First, we establish that the Space Race caused NASA activity to expand more in the counties

that had already specialized in the building blocks of space technology before Sputnik. The

amount of NASA spending and the number of NASA patents expanded significantly relative

to other locations that were not already specialized in the rudiments of space technology.

Both NASA spending and NASA patenting grew over time, so by the time that the iconic

Space Race ended in 1972 at the conclusion of the successful Apollo 17, the di↵erential

between pre-existing space places and other counties was especially large.

Second, we show that the Space Race led manufacturing value added and employment to

expand more in the space places that had already specialized in early space technology before

Sputnik. Interestingly, the e↵ects are strongest after the end of the race to the Moon in 1972.

One possible concern is that NASA activity followed trends in manufacturing. We show that

there were negligible di↵erential trends in the space places before the Space Race began,

thus ruling out that space activity simply followed local private sector trends. Our results

are also robust to controlling for industry or state specific trends, military contracting, and

skill.
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Our main estimates of the growth impact of NASA R&D imply a social rate of return of

over 20%. Because long-term output e↵ects include technology di↵usion delays and private

sector adjustments, our estimates are informative about the social rate of return in equilib-

rium. One caveat to our approach is that our estimates are likely to be lower bounds as they

do not account for international technology di↵usion or e↵ects outside of the manufacturing

sector.

We also find that R&D spending on the Space Race had a larger impact than typical

government expenditures. Our results imply a localized NASA fiscal multiplier of about 3.8

in the post-Space Race period, as measured by changes in manufacturing value added. This

estimate is notably larger than the cross-sectional estimate of 1.8 in Chodorow-Reich (2019)

and larger than the upper end of the range (2.0) of Ramey’s (2011) time-series estimates.

Our third set of results test for local productivity spillovers from NASA R&D. We find

meaningful long-term local e↵ects on measured productivity, accounting for about a third

of the output e↵ects. The presence of productivity spillover e↵ects may explain why fiscal

multipliers for R&D spending are larger than other government spending programs and the

magnitude of our estimated social rates of return.

Our estimated value added e↵ects could be large because they represent local rather

than national e↵ects. Local estimates would overstate national e↵ects if workers migrated

toward space places from other locations. Thus, our fourth set of results explores migration

responses and implications. Studying migration during the Space Race era is a challenge

due to a lack of panel data on individual workers. Instead, we turn to patent data where

we build on recent advances in identifying specific inventors (Akcigit, Grigsby, Nicholas, and

Stantcheva 2022) to construct a patent-inventor-level panel dataset. Our analysis examines

whether inventor migration toward space places increased after onset of the Space Race. The

results reveal that inventors did in fact migrate toward these space locations, and the results

are robust to typical county-to-county migration patterns and state tax policy.

While our migration responses would imply national e↵ects are smaller than local e↵ects,

other positive spatial spillovers – demand and technology being two notable examples –

can counteract them. We develop a spatial framework based on Donaldson and Hornbeck

(2016) that allows for workers and firms to respond to local shocks through adjustments in

migration, trade, and production. Our framework accounts for multiple sources of spatial

spillovers from NASA R&D to obtain the net e↵ect of non-local NASA activity. Applying

this theoretical framework, our fifth set of results shows that in the medium term – during

the Space Race – positive market e↵ects amplified the aforementioned positive local e↵ects.
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We do not find market e↵ects in the post-Space Race era, however. Including both local-

and market-level e↵ects, which better captures a national multiplier, our estimated implied

multiplier of NASA expenditures in the post-race era is about 4.1. This estimate is virtually

the same as the local multiplier.

We believe that our analysis of the Space Race makes important new contributions to

the economics of innovation literature. A recent literature has sought to obtain causal

estimates of the e↵ect of public R&D on knowledge production (Azoulay, Gra↵ Zivin, Li,

and Sampat 2019, Gross and Sampat 2020, Lanahan and Myers 2021) and productivity

(Moretti, Steinwender, and Van Reenen 2021).1 Perhaps most closely related to our work

here is Schweiger, Stepanov and Zacchia (2021) who show that Science Cities created in

Soviet Russia for space and military purposes are more productive and innovative today. We

contribute to this literature by providing causal estimates of the e↵ect of public R&D on

long-term economic growth and estimating implied social rates of return to the real economy.

Second, our analysis contributes to the literature on industrial policy. Recent work

has emphasized that temporary management practice transfers (Giorcelli 2019, Bianchi and

Giorcelli 2020), trade protection (Juhasz 2018), or university funding (Kantor and Whalley

2014 and 2019, Andrews 2020, Hausman 2022) can have long-term e↵ects on directly targeted

firms or regions. Direct causal evidence on the impacts of industrial policy in Criscuolo,

Martin, Overman, and Van Reenen (2019) shows contemporaneous e↵ects on employment

for small firms, but has not examined long-term e↵ects. Our analysis provides new empirical

insights into the spatial and temporal lags associated with public R&D that directly engaged

private firms.

Third, we add new insights to the literature on government spending multipliers. Few

studies focus on heterogeneous fiscal spending multipliers.2 Our findings complement Cox,

Muller, Pasten, Schoenloe and Weber’s (2021) analysis that documents heterogeneity in

government spending multipliers across sectors. We provide a novel source of multiplier

amplification - productivity spillovers that happen over time - rather than sector-specific price

stickiness. Our findings complement Ramey’s (2021) work on short- versus long-term e↵ects

of public infrastructure. We also contribute to the debate on whether local fiscal multipliers

adequately reflect nationwide multipliers (Nakamura and Steinsson 2014, Chodorow-Reich

2019, Ramey 2019). Our estimates of individual migration responses to local Space Race

activity builds on recent work using patent inventor panel data to understand migration

1There is a long standing literature that has sought to estimate social e↵ects of R&D from case studies,
regression analyses, and macroeconomic models. See Jones and Summers (2021) for a literature review.

2See Chodorow-Reich (2019) and Ramey (2011) for recent surveys.
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responses to tax policy and their implications (Moretti and Wilson 2017, Akcigit, Grigsby,

Nicholas, and Stantcheva 2022). We show that while individual patent inventors did migrate

toward areas experiencing persistent fiscal shocks during the Cold War, migration e↵ects

were not su�ciently large to generate a wedge between local and national fiscal multipliers.

Modern commentators contend that Space Race research had particularly high returns

because NASA’s organization was highly e↵ective at research coordination and the intrinsic

geopolitical motivation encouraged scientists to exert high levels of e↵ort (Mazzucato 2021).

Those advocating for significant government spending to jump-start innovation and economic

growth often call for a new “Sputnik Moment,” harkening back to a time when the United

States devoted significant treasure racing the Soviet Union to the Moon (Gruber and Johnson

2019).3 Yet, surveys of space scientists shortly after the Space Race suggest that NASA’s role

in technological development was mostly incremental (Robbins, Kelly and Elliot 1972) and

some economists since Fogel (1966) – who was writing in real-time during the Space Race –

have expressed skepticism that commercially relevant technology would be developed from

mission-oriented R&D.4 While the intellectual roots of the economics of innovation draw on

the proverbial “moonshot” (Nelson 1959), a measure of the e↵ects of such large-scale public

expenditures still remains elusive (Bloom, Van Reenen, and Williams 2019).5 Our estimates

imply iconic Moonshot R&D had first-order e↵ects on economic growth.

2 Historical Background

The Origins of NASA and its Geography. The Space Race e↵ectively began with

the Soviet launch of Sputnik on October 4, 1957. The U.S. government had intelligence

that a launch was imminent (Logsdon 1995, 329), but the high-profile failure of the U.S.’s

initial satellite e↵ort – Project Vanguard – on live TV on December 6, 1957, instilled public

fear (Divine 1993). Perceived American technological inferiority brought immediate national

3For example, President Joe Biden initiated his Cancer Moonshot in February 2022, renewing the e↵ort
that President Barack Obama began in 2016. But the proverbial Moonshot ambition with regard to cancer
is long-standing. In advocating for the National Cancer Act, President Richard Nixon argued in his 1971
State of the Union, “The time has come in America when the same kind of concentrated e↵ort that split the
atom and took man to the moon should be turned toward conquering this dread disease.”

4Over 60 years ago, Nelson (1959, 297) laid bare in rather subdued language the challenge to economists
to begin understanding the impacts and tradeo↵s associated with national spending on scientific research:
“Recently, orbiting evidence of un-American technological competition has focused attention on the role
played by scientific research in our political economy. Since Sputnik it has become almost trite to argue that
we are not spending as much on basic scientific research as we should . . . it seems useful to examine the
simple economics of basic research. How much are we spending on basic research? How much should we be
spending? Under what conditions will these figures tend to be di↵erent?”

5Business R&D appears to be shifting away from basic research (Arora, Belenzon, and Sheer 2021). In
such an environment, the importance of public funding for basic research may be increasing.
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security concerns, as Eisenhower emphasized in his 1958 State of the Union Address: “what

makes the Soviet threat unique in history is its all-inclusiveness. Every human activity is

pressed into service as a weapon of expansion. Trade, economic development, military power,

arts, science, education, the whole world of ideas – all are harnessed to this same chariot of

expansion. The Soviets are, in short, waging total cold war.”

In response to the emerging geopolitical tension, the Eisenhower administration pro-

posed the National Aeronautics and Space Administration (NASA) in 1958, which would

bring space activities under civilian control, except as they related to weapons systems, mil-

itary operations, and national defense.6 Exploring space transcended the simple military

imperative, for as McDougall (1985, 172) notes in his Pulitzer Prize-winning history of the

Space Race era, “The purposes of space activities were the expansion of human knowledge,

improvement of aircraft and space vehicles, development of craft to carry instruments and

living organisms in space, preservation of the United States as a leader in space science and

applications, cooperation with other nations, and optimal utilization of American scientific

and engineering resource.” The immediate need was to forcefully respond to Sputnik and to

the national realization that the U.S. was slipping behind the Soviet Union technologically.

Given the time-sensitive importance of building out the U.S. space program quickly in

the immediate aftermath of Sputnik, much of early NASA’s locational choices were e↵ec-

tively predetermined, adopted whole-cloth from NASA’s predecessor the National Advisory

Committee for Aeronautics (NACA) or parts of the military.7 NASA itself soon established

a few of its own physical research centers and operational facilities to fulfill its mission. First,

in 1959 NASA began construction of a new research center (to be named the Goddard Space

Flight Center) in Beltsville, MD, a location chosen mostly for expediency (Rosenthal 1968,

28). Second, to facilitate the manufacturing, testing, launch, and control of space vehicles,

NASA established a variety of centers within the so-called “Space Crescent” (i.e., the Gulf

6Military applications of space technology were to be developed by the Advanced Research Projects
Agency, which was also established in 1958.

7With administrative headquarters in Washington, DC, NASA began operations on October 1, 1958,
absorbing NACA intact, including its 8,000 employees, an annual budget of $100 million, three major research
laboratories – Langley Aeronautical Laboratory (established in 1917 in Hampton, VA), Ames Aeronautical
Laboratory (established in 1939 in Santa Clara County, CA), and Lewis Flight Propulsion Laboratory
(established in 1942, renamed John H. Glenn Research Center in 1999, near Cleveland, OH) – and two
smaller test facilities (established in 1945 on Wallops Island, VA; and established around 1946 at Edwards
Air Force Base in Kern County, CA). In addition, NASA in short time incorporated three military research
groups that were conducting early work to support space flight – specifically, the space science group of the
Naval Research Laboratory in Washington, DC; the Army’s Jet Propulsion Laboratory (JPL) near Pasadena,
CA, managed by the California Institute of Technology; and the Army Ballistic Missile Agency (renamed
Marshall Space Flight Center) in Huntsville, AL, where Wernher von Braun’s team of engineers had been
engaged in the development of increasingly powerful rockets since the end of World War II.

6



of Mexico region).8 At least with regard to the new Manned Spacecraft Center that would

serve as the hub of the Moon mission, NASA ultimately chose Houston because of a number

of its desirable characteristics: access to water transportation su�cient for barges, moderate

climate, all-weather commercial jet service, mature industrial complex and su�cient labor

resources, and strong electric utility and water supply (Dethlo↵ 1993, chapter 3).

Growth and Organization. While Eisenhower’s early e↵orts may have “ensure[d]

that the United States remain a leader, not the leader in space, [he] did not commit the

nation to an all-out race” (McDougall 1985, 172; italics in original). President Kennedy,

however, laid down a bold marker, announcing on May 25, 1961, shortly following Alan

Shepard’s successful suborbital space flight: “I believe that this nation should commit itself

to achieving the goal, before this decade is out, of landing a man on the Moon and returning

him safely to Earth.” Of course, the U.S. was nowhere close to having the technological

capability to immediately fulfill that mission, so Kennedy’s proverbial Moonshot required

a massive investment in space technology and hardware. NASA’s budget grew accordingly,

from roughly $7 billion (2021$, or about 0.9% of all federal spending at the time) in 1961 to

a peak of about $51 billion (2021$, or 4.4% of the federal budget at the time) in 1966.9

The National Aeronautics and Space Act of 1958 gave NASA broad powers to develop,

test, and operate space vehicles and to make contracts for its work with individuals, cor-

porations, government agencies, and others (Rosholt 1966, 61). NASA, from its inception,

made the decision to contract out much of the R&D work to private contractors. T. Keith

Glennan, the first NASA Administrator, was an advocate for contracting-out not only be-

cause of his philosophical aversion to expanding the government payroll, but also because

“by spreading its wealth to contractors, NASA would not just be putting together a national

team to beat the Soviets in the space race but would also be invigorating the aerospace

industry and strengthening the country’s economy” (Hansen 1995, 82-83).10 This emphasis

8Specifically, a new Manned Spacecraft Center was established in Houston in 1962 (renamed Johnson
Space Center in 1973); Cape Canaveral in 1962 became the Launch Operations Center (renamed Kennedy
Space Center in December 1963) and maintained one of the largest buildings in the world to facilitate the
assembly of space vehicles; the largest rocket test facility (now Stennis Space Center) was built in southern
Mississippi (Hancock County) on the Pearl River in 1961; and NASA took over the Michoud Assembly
Facility in New Orleans in 1961 to produce rockets during the Space Race era and external fuel tanks during
the Space Shuttle era.

9In nominal terms, NASA’s budget was $744 million in 1961 and $5.933 billion in 1966. NASA’s spending
did decline after the landing on the Moon was successfully accomplished in 1969, but still accounted for 1.92%
of federal spending in 1970. Subsequently, the level of spending fluctuated between 0.75% to 1% of the federal
budget from 1975 until the end of the twentieth century. To provide some perspective on the magnitude
of NASA’s budget during the Space Race, consider that in 2020 the total of all non-defense federal R&D
amounted to 1.5% of the federal budget.

10For further elaboration on Glennan’s views see (Hunley 1993, 5) and (Dunar and Waring 1999, 64).
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is reflected in the growth in personnel. While in-house NASA employees grew from 10,200

in 1960 to 34,300 in 1965, employment by NASA contractors increased from 30,500 in 1960

to a peak of 376,700 in 1965. This massive increase in space-related employment outside

of NASA was concentrated in private sector contractors, which accounted for 90% of total

NASA employment in 1965. Universities, on the other hand, accounted for only 1.7% of

total NASA employment in 1965 (Van Nimmen and Bruno 1976, 106). By 1988 total NASA

employment was only a fraction of its heyday, with a total workforce of 52,224, with 56

percent of them employed by contractors (Rumerman 2000, 468).

Selecting Contractors. While the space program required scientists and engineers to

solve basic scientific questions, in practical terms winning the Space Race and achieving

successes in subsequent space missions meant developing and engineering actual products.

According to an input-output table constructed for NASA expenditures for fiscal year 1967,

the top five manufacturing sectors accounted for about half of NASA expenditures (Schnee

1977, 65).11 Similarly, relatively few firms were so-called prime NASA contractors. In 1965,

for example, the top 10 contractors received nearly 70% of the contract spending. Leading

technology companies receiving NASA projects included North American Aviation, Boeing,

Grumman Aircraft Engineering, Douglas Aircraft, General Electric, McDonnell Aircraft,

International Business Machines, and Radio Corporation of America (Van Nimmen and

Bruno 1976, 197). Given that the vast majority of the work that NASA, and its contractors,

actually conducted led to manufactured goods, NASA’s impact on the real economy should

manifest in manufacturing outcomes, not just patents or scientific publications.

Rosholt (1966, 272) notes in his administrative history of early NASA work that “The

geographic distribution of NASA contracts was a touchy political problem. Congressmen

were sensitive to the fact that most of NASA’s procurement dollar was spent in a handful of

states. NASA’s answer was that the competence of a contractor rather than his location was

the basis for awarding contracts.” After all, excellence was demanded because, quite literally,

lives were at stake. Dieter Grau, the Director of the Quality and Reliability Assurance Lab at

Marshall, put the logic simply: “you cannot put a man on a [launch vehicle] and say ‘if it fails,

and if you get killed, take the next one.’” Marshall, therefore, demanded that contractors

shift from their perhaps existing “mass production with acceptable errors” mentality to one

where “craftsmanship-do it right the first time-with no error” was the imperative (Dunar

and Waring 1999, 45). New monitoring systems, such as NASA’s Performance, Evaluation

11The five SIC 3-digit industries with the largest share of NASA spending were: Aircraft and Parts
(SIC=372), Electrical Equipment (SIC=361-366), Computer And O�ce Equipment (SIC=357), Industrial
Inorganic Chemicals (SIC=281), and Instruments (including Professional and Scientific) for Measuring, Test-
ing, Analyzing, and Controlling (SIC=381-387).
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and Reporting Technique (PERT) (Bilstein 1996, 286), were established to ensure contractor

compliance with engineering specifications and NASA scientists embedded themselves in the

contractors’ organizations to minimize informational friction (Sato 2005).

Technology Impacts. Winning the Space Race did not necessarily entail developing

entirely new technologies as much as combining or speeding along the development of existing

technologies (Robbins, Kelly and Elliot 1972). NASA’s mission-oriented objective, especially

during the race to the Moon, led to R&D breakthroughs that might cause the casual observer

to wonder whether any broader economic impacts would even be expected. As examples, in

Appendix Exhibit A1 we display several representative NASA patents of the Space Race,

including patents on space capsule design, a navigation and guidance system, and a Moon-

landing apparatus. Yet the Space Race did produce and escalate innovative breakthroughs

in a number of areas, such as cryogenics, integrated circuits, digital communications, and

computer simulation, that had the potential to spillover more broadly (see, e.g., Bilstein

1996). In Appendix Exhibit A2 we show several examples of burgeoning technologies in

which NASA participated in enough fashion that the agency considered them spin-o↵s.

Such technologies include magnetic resonance imaging, remote sensing, a gas analyzer, and

a circuit connector.

Astronauts lamented that they were merely “spam in a can” when it came to flying

spacecraft because the vehicles and systems were so highly automated. Today we dream of

fully autonomous vehicles, but in fact NASA created one during the 1960s and it landed on

the Moon. To achieve such stunning technological successes during the 1960s, especially, and

into the 1970s, NASA rapidly developed novel computer hardware and software systems; data

management systems (e.g., on-board processing, data compression, data archival); digital

communications (i.e., an early-form “internet”); man-machine systems that combined human

sensory, cognitive, language, and motor-control systems with machine intelligence; sensors

that could be used for mapping and meteorology; and robots. Many of the ideas that NASA

pursued, especially in the post-Space Race era, might have seemed like science fiction at the

time and some only recently have begun to achieve widespread commercial application. The

so-called Sagan Report (NASA Study Group 1980) describes NASA’s spearheading work and

developments in “machine intelligence and robotics.” Therefore, the main point we emphasize

here is that NASA’s very early work and technological successes were intensely focused

on accomplishing the Moon mission, but the groundwork was laid for many subsequent

innovations that had the potential to contribute to tangible advancements in real economic

activity, especially in manufacturing.
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3 Data Construction and Descriptive Statistics

This paper uses newly-constructed datasets on technological specialization, space sector

activity, and manufacturing during the Cold War era. Our measurement relies on three

components: (i) declassified CIA intelligence documents detailing Soviet space capabilities,

which are then matched to pre-Sputnik U.S. patents, thus enabling us to define space places

based on technological similarity; (ii) county-level NASA patents and spending that are used

to measure space sector activity; and (iii) county-industry-level manufacturing census data

used to measure outcomes in the real economy. In this section, we describe the construction

of these components and some data limitations. Detailed discussions of the construction of

each variable, as well as the data sources, are available in the online appendix sections 1 and

2.

Space Technologies and Space Places. Our research design compares changes in

outcomes between counties that specialized in research forming the building blocks of space-

flight technology before the Space Race to those that did not. We first need to measure

which technologies were the building blocks of spaceflight technology. At first glance, us-

ing observed NASA technology choices might seem a promising approach. However, NASA

technological choices reflect both mission requirements and opportunities provided by U.S.

leadership in specific technologies that could help win the race to the Moon. Locations that

specialized in technologies where the U.S. had technological superiority – and selected by

NASA for that reason – may have been poised for growth regardless of the space program.

Integrated circuits is a case in point. While NASA was one of the first large-scale customers

for microchips, locations specializing in microchip research likely would have grown even

without NASA largess. Because NASA may have simply harvested technological potential,

rather than having developed technological breakthroughs to solve emergent challenges, a

correlation between NASA activity and growth may not reflect a causal e↵ect.

To address this issue we define the building blocks of spaceflight technology from Soviet

technology choices. Soviet choices did not necessarily reflect the scientific areas where the

U.S. had technological superiority, as a lack of U.S.-Soviet trade or knowledge sharing made

them irrelevant. Instead, Soviet technological choices reflected mission requirements as well

as opportunities provided by Soviet leadership in specific technologies. We obtain these

technologies by digitizing the CIA’s declassified National Intelligence Estimates of Soviet

Space Capabilities (NIE) from 1947 to 1991.12

12The titles and dates of the NIE documents are provided in online appendix table A1.
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We obtain the locations of pre-Space Race spaceflight technology in the United States by

searching for post-Sputnik Soviet spaceflight technologies in the U.S. patent record. Using

text similarity to connect units in technology-space has been shown to quantify economically

meaningful concepts (see, e.g., Azoulay, Gra↵ Zivin, Li, and Sampat 2019, Myers 2020, and

Meyers and Lanahan 2021). We discuss our approach in detail in online appendix section

2.2, but provide a brief summary here. To connect NIE space intelligence documents to

patents, we first require a corpus of scientific terms for which we search in both documents.

We use the Science Direct (SD) technology term corpus that is used to index specific tech-

nologies in all of their scientific publications.13 This corpus of technology terms covers a

much broader range of technologies than other commonly used approaches that are domain

specific (e.g., Medical Subject Headings (MeSH)). To estimate a numerical similarity score

between each NIE document and each U.S. patent we use term frequency cosine similarity.14

Finally, we compute the county-level median of the similarity between technologies in the

pre-1958 patents and the post-1958 NIE Soviet space technology intelligence reports, which

we term the space score. To visually illustrate our approach, two examples of pages from NIE

documents and patents containing relevant SD technology terms that contribute to textual

similarity are highlighted in Appendix Exhibit A3. The frequency of similar terms in the

patents and NIE pages leads them to be highly similar and have a high space score value.

We define those counties with above-median values of the space score as space places.

Our textual similarity measure captures spaceflight technological similarity regardless

of how patents were classified by the Patent O�ce. Examples of patents that are highly

similar to a specific NIE document are shown in Figure 3. We see patents dealing with

pop-up fins, orbital devices, and satellites.15 While the majority of frequent technology

terms in our examples are closely connected to spaceflight, they do suggest one potential

limitation of our measure. NIE intelligence and U.S. patent documents may be textually

similar because of matching non-spaceflight technologies. For instance, military technology

13We obtain this corpus as the set of all scientific terms here: https://www.sciencedirect.com/topics/index,
accessed on September 7, 2021.

14The set of SD technological terms we use excludes those that appear in a very high fraction of patents -
the top 1% most frequently occurring terms - and those appearing in no patents. We also drop stop words
and stem the SD terms, as discussed in the data appendix and as frequently applied in the literature on
using text as data (Gentzkow, Kelly and Taddy 2019). We present details of these choices and robustness
results in the online appendix section 2.2.

15Examples of SD technology terms most frequent in patents owned or funded by NASA, shown in appendix
table A2, include “Aircraft,” “Antennae,” and “Propellant.” Examples of SD technology terms most frequent
in NIE space technology intelligence reports, shown in appendix table A3, include “Missiles,” “Satellites,”
and “Orbitals.” Appendix table A4 reports the SD terms occurring frequently in both NIE and patent
documents. Such terms as “Aircraft,” “Spacecraft,” and “Satellites” are frequently found in both types of
documents.
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terms such as “Warhead” or “Missile” – even though they were commonly used to describe

rocket technology at the time – could lead to a high similarity score even if their space-

relevance might be low. In appendix table A5 we show that our patent-level space score

based on textual similarity between the patent and NIE technologies strongly predicts NASA

ownership or funding of a patent, conditional on military funding, technological area, and

county fixed e↵ects.16 We further address this concern by showing that our main results

below are robust to a broad range of controls for military research and spending (Table 4)

and point out here that the spatial correlation between military and NASA R&D activity is

small (appendix table A6).

Map 1 shows the spatial distribution of space scores. The map shows that many space

places – i.e., those with a high space score – were distributed throughout the country without

a cluster in a single state or region. In Section 4 below we show econometrically that

our measure of pre-Sputnik space-related research in a county performs well in explaining

subsequent NASA spending and patenting.

NASA Activity. We measure NASA activity using expenditures and patents. We col-

lect and digitize new data on NASA primary contractors from NASA’s historical databooks.

These data include the company names, amount of primary contracts, and place of perfor-

mance (in addition to location of company headquarters) for the top 100 contractors from

1963 to 1992.17 NASA primary contracts, in practice, flowed to a small number of large firms

so that the top 100 firms accounted for between 87% to 92% of total contractor spending. In

addition to contractor spending, we also include NASA spending on its own R&D centers.18

A second source we use to measure NASA activity is patents owned or funded by the

agency. For patents prior to 1976, this information is drawn from Fleming et al. (2019) who

16The regression results reported in online appendix table A5 are patent level and are specified as:

NASAl =!1 + !2Space Scorel + �t + ⌫l, (1)

where NASAl takes a value of 1 if the patent is a NASA patent and zero otherwise. SpaceScorel measures
the cosign similarity between patent l and all NIE documents, as discussed above. We expect !2 to be
positive if our measure captures technological similarity to NASA demands. We report versions of this
model that also control for NBER technology subcategory fixed e↵ects, other government involvement in the
patent, and county fixed e↵ects.

17Companies receiving the largest amount of NASA contracts include Boeing, Ford, General Motors,
General Electric, Grumman, IBM, McDonnell Douglas, North American Aviation. Prominent metro areas
containing counties having high levels of NASA spending include Los Angeles (Los Angeles County, CA),
New York City (Nassau County, NY), and Cincinnati (Hamilton County, OH).

18To avoid double counting funds that might have been contracted out by NASA R&D centers, we multiply
NASA centers’ R&D spending by NASA’s national fraction of in-house spending (25%) to obtain totals of
NASA-specific R&D within the county where the center is located.
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have scraped assignee and government funding information from the full text of USPTO

patents. After 1976 the information is directly reported by the USPTO. We next allocate

granted patents to locations. We utilize a few sources to obtain a county for each patent.

For the data before 1975 we use the HISTPAT database that has scraped the full text of the

patent to assign each patent to the most appropriate county (Petralia, Balland and Rigby

2016). For the post-1975 data we use the USPTO Patentsview data that has the exact

address for each inventor. We use the address of the first inventor to assign a patent to a

county.19 Map A1 in the online appendix shows which counties had a patent or any spending

from 1947 to 1992. Appendix table A6 shows that NASA spending and NASA patenting

variables are highly spatially correlated.

Figure 1 plots the times-series of NASA activity from 1947 to 1992. In Panel A we

see that real NASA spending increased substantially after 1958. Spending peaked in 1965

at the height of the Space Race before declining more than 50% by the mid-1970s. While

spending steadily increased thereafter, it did not return to the Space Race peak. In panel

B we see that NASA patents were very low before NASA was founded in 1958.20 During

the Space Race the number of patents granted per year increased from 21 in 1961 to 256 in

1969. From 1967 until today the number of patents per year has fluctuated in the 150 to 300

range. In the postwar period the total number of patents and total number of government

patents increased much more slowly and gradually than NASA’s. Both NASA spending and

patenting show a sharp increase in activity after the launch of the Space Race. Di↵ering

trends after the end of the Moon missions in December 1972 may reflect a tilt of NASA

activity toward basic research in the post-Space Race era.

Manufacturing Data. The primary data we use to estimate the impact of NASA

research and development on value added, employment, and labor income is from the Census

of Manufactures. We digitize data at the county-industry level from the censuses of 1947,

1954, 1958, 1963, 1967, 1972, and combine them with existing digital sources from 1977,

1982, 1987, and 1992.21 We obtain data on total value added, total employment, total

annual wages, and total plant and equipment additions for each county-industry cell. We

19We build a cross-walk between fips counties and state-city name text fields from the USPTO patent
technology team database (https://bulkdata.uspto.gov/data/patent/ptmtdvd/). This database assigns each
address on a patent from 1969 to 2014 to a fips county. Most city-state text fields are assigned to a unique
location. For the few that are not we assign the city-state text to the largest county listed.

20The few patents from before 1958 are likely from patents under NASA’s precursor the National Advisory
Committee for Aeronautics. The patents were later reassigned to NASA (Ferguson 2013).

21Manufacturing census data are available at the county-industry level after 1992; however, the data are
reported at the NAICS instead of SIC level from 1997 onward. For this reason and given our focus on the
Space Race prior to the end of the Cold War, we do not examine later years of data.
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use 2-digit SIC industries (1972 definition) in the county as the unit of analysis.22

Additional Data. We also employ data on local measures of skill from the population

census, number of research scientists from the National Register of Scientific and Technical

Personnel, the number of IBM mainframes installed in various locations, defense spending,

and transportation cost data. Details of the construction and source of each variable are

described in the Appendix.

Sample Selection and Descriptive Statistics. The sample of counties and industries

represented in our analysis is based on those reported in the Census of Manufactures, with

the caveat that we exclude the few counties that had no patents between 1945 and 1958.23

E↵ectively, our sample captures the major urban labor markets that had innovative activity

prior to 1958. Entry and exit of specific manufacturing sectors in a county leads to an

unbalanced panel. Data may also be unreported because the number of establishments was

below the threshold for confidentiality. We require that a county-industry cell report in at

least three censuses to address issues with a highly unbalanced sample. Additional sample

restrictions include a requirement that both value added and employment were reported

and that the reported number of total workers (i.e., production plus non-production) was

greater than the number of reported production workers in a given year. We also drop

the 30 observations that appear in ND, SD or WY because only a single county in each

state reported manufacturing data. Our analysis sample contains 26,862 county-industry

observations from 791 counties and 20 two-digit SIC industries from 1947 to 1992.

Table 1 provides a first look at summary statistics of relevant measures in 1958, the first

year immediately after Sputnik was launched. Column (1) presents the means and standard

deviations of key variables for the full sample. We stratify counties based on whether they

had already specialized in the technological areas that the Space Race with the Soviets would

later demand. In columns (2) and (3) we stratify based on whether a county was considered

a space place or not, as defined above. Column (4) reports the p-value for di↵erences in the

baseline variables for the full sample. In columns (5)-(8) we conduct the same analysis on

a limited sample that excludes the upper 25th and lower 25th percentile of places based on

their total number of patents before 1958.

Columns (1) to (4) show that firms that would later be more exposed to the Space Race

22The census manufacturing data are also available at the 3- and 4-digit SIC ⇥ county level. We choose
the 2-digit level, however, because the masking of cells with few establishments results in extensive missing
data if we were to use disaggregated data. Using 2-digit level data results in fewer non-reported observations.

23We exclude these counties without pre-1958 patents because we are unable to compute a space score for
them.
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were already quite di↵erent in 1958. In columns (2) and (3) we see that those locations that

were eventually more heavily exposed to the Space Race generally had larger firms, had more

patenting, and were more populous with their citizens more likely to have greater human

capital. The results in columns (5) to (8) contrast with this set of findings. In this limited

sample we see similar levels of manufacturing activity, patenting, population, and upper tail

human capital.

Throughout our analysis, we account for di↵erences between areas with high and low

exposure to the Space Race using a number of approaches. First, all regressions include a

full set of county fixed e↵ects that control for permanent di↵erences across counties. Hence,

our identification strategy does not require that counties were similar in 1958. We assume

only that manufacturing activity in counties with pre-1958 technology more similar to Space

Race Soviet technology would have evolved in parallel to other less similar counties had

the Space Race not occurred. We present evidence in support of this assumption below.

Because manufacturers in certain industries may have been more exposed to the Space

Race regardless of local technological specialization, we add industry fixed e↵ects so that we

are only considering within-industry changes. Moreover, we control for potential shocks to

counties with di↵erent characteristics by using a wide range of control variables interacted

with time fixed e↵ects.

To further strengthen our identification strategy, we also examine how our results change

when we use the limited sample in columns (5)-(8). When we exclude counties with high or

low levels of pre-1958 patenting, baseline characteristics in 1958 were quite balanced between

high and low space score counties. We consistently find that the e↵ects of interest do not

di↵er in this subsample.

4 Local E↵ects of Public R&D

This section presents our main results. We analyze how the launch of the Space Race in

1958 a↵ected a variety of activities in space places – that is, places that had, prior to Sputnik,

specialized in technologies that would later prove useful for winning the Space Race. For this

analysis we use data on NASA expenditures and patenting and manufacturing outcomes in

the census years of 1947, 1954, 1958, 1963, 1967, 1972, 1977, 1982, 1988, and 1992.

NASA Activity. We first test whether NASA activity was disproportionately allocated

to locations that specialized in the early building blocks of space research before the Space
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Race even began. We estimate the following equation:

arsinh(NASAit) =↵1 + ↵2Space Placei,<1958 ⇥ Space Racet+

↵3Space Placei,<1958 ⇥ Post-Space Racet + �i + �t + ⌫it.
(2)

The outcome variable is the inverse hyperbolic sine of a certain NASA activity measure,

such as the amount of NASA spending or number of NASA patents, in county i in year

t.24 Space Placei,<1958
is a binary variable that takes a value of one when the text similarity

between technologies mentioned in pre-1958 patents in county i and those mentioned in

the post-1958 National Intelligence Estimates of Soviet space capabilities is above median.

Space Racet is a dummy variable that takes a value of one during the Space Race (i.e., 1959

to 1972, inclusive) and zero otherwise. Post-Space Racet is a dummy variable that takes a

value of one after the Space Race (i.e., 1973 to 1992, inclusive) and zero otherwise. �i is

a full set of county fixed e↵ects and �t is a full set of year e↵ects. As areas with pre-1958

space specialization might have had unobserved time-invariant characteristics that drove

space activity before, during, and after the Space Race, we include county fixed e↵ects in

our analysis. To account for potential correlation of shocks within counties across time, we

cluster standard errors at the county level.

In addition, areas specializing in space technology before 1958 may have been more

innovative overall and subject to di↵erent trends regardless of the Space Race. In some

models we add Total Pre-1958 Patentsi ⇥ �t controls to account for these trends. In these

models our identification is from variation in the composition of pre-1958 innovation across

counties, not the level. Finally, we include Statei⇥�t to flexibly control for state level trends

in some models.

We expect ↵2 and ↵3 to be positive as places that were specialized in space-relevant

technologies before 1958 were likely to experience more NASA activity after 1958, once the

Space Race began. If NASA spending became more tightly connected to pre-Sputnik research

specializations, as basic research intensity rose, we might expect e↵ects to have grown over

time.

Our research design is based on the idea that locations that specialized in scientific

research before 1958, which ultimately became important space technology areas after 1958,

did not experience higher levels of NASA activity until after the Space Race began. We

regard this assumption as plausible given that the decision to go to the Moon was only made

24We use the inverse hyperbolic sine transformation arsinh(x) = ln(1 +
p
x2 + 1). This approximation to

the log transformation retains zero values of the NASA activity in our estimation sample.
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after the launch of Sputnik in 1957. As NASA did not even exist until 1958, we cannot

examine pre-Space Race trends with these data. We do, however, examine the possibility

that NASA may have allocated space funding in response to pre-existing trends in the local

manufacturing sector in later analyses.

The results of estimating equation (1) are reported in Table 2. In columns (1), (2), and

(3) we see that NASA spending was larger in space places during (1958-1972) and after

(1973-1992) the Space Race.25 Our preferred estimates in column (3) imply that NASA

spent $2.6 million ($1958) more during and $4.2 million ($1958) more after the Space Race

in locations with a prior history in space-related research. We use these magnitudes to

estimate local fiscal multiplier e↵ects below.

In columns (4) through (6) we see similar results when we use patents owned or funded

by NASA as the outcome variable. The results di↵er in magnitude from the expenditures,

perhaps reflecting that Space Race activity was more focused on refining and applying ex-

isting technologies than developing new ones. Across all columns we obtain larger point

estimates for the post-Space Race era than for the time period when the race to the Moon

was taking place. This finding may indicate that NASA spending became more focused on

basic research in the post-Space Race era.

Manufacturing. We use the same empirical strategy to examine manufacturing out-

comes. We estimate:

log(Yijt) =�1 + �2Space Placei,<1958 ⇥ Space Racet + �3Space Placei,<1958 ⇥ Post-Space Racet+

�i + �t + Pre-1958 Patentsi ⇥ �t + ⌫ijt.

(3)

Here the outcome variables are the log of a manufacturing outcome, such as value added or

employment, in county i, industry j, and year t. All models include a full set of county fixed

e↵ects (�i), a full set of year e↵ects (�t), and Pre-1958 Patentsi ⇥ �t controls to account for

di↵erential trends based on pre-existing patenting in a county. In other versions of the models

we include Statei ⇥ �t to flexibly control for state-level trends. Finally, we also extend the

model to include ✓j and ✓j⇥Yeart fixed e↵ects to account for time invariant di↵erences across

industries and industry specific flexible time trends. To account for potential correlation of

shocks within county-industry cells across time, we cluster standard errors at the county-

industry level.26 Again, we expect �2 and �3 to be positive as places that were specialized in

25In Appendix table A7 shows the results are very similar using the limited sample described in Table 1.
26We examine alternative inference procedures - clustering on county, county ⇥ industry, state-industry

and using a spatial HAC approach - in online appendix table A8.
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space-relevant technologies before 1958 received more NASA activity once the Space Race

commenced, which likely impacted manufacturing outcomes.

In Table 3 we report the main results. The results in columns (1) to (4) show that

manufacturing value added grew faster in space places. The e↵ects are more than double

(and more precise) after the race to the Moon had ended after 1972. Growing space place

e↵ects could reflect NASA’s shift toward basic research over time, which may have produced

larger local spillovers.27 It could reflect manufacturing productivity taking time to respond

due to lags in technology di↵usion, thus implying that gains from public R&D take time

to manifest.28 Growing space place e↵ects could also reflect lags in the responses of private

sector firms and workers. Crowding-in of physical capital investment or follow-on innovation

could take time and amplify the direct e↵ects of NASA activity. Alternatively, increasing

e↵ects could reflect spatial reallocation that takes time to manifest, as migration, for example,

may be more responsive to a persistent demand shock.

In columns (5) to (8) we see a similar pattern of results for employment. Again, the

e↵ects are larger and more precise after the Moon landing phase of the Space Race had

ended. The magnitudes of the employment and value added e↵ects are quite similar.

These manufacturing results are robust to controlling for state trends, industry fixed

e↵ects, and industry trends. They are also robust to dropping any single state or industry

(online appendix figures A1 and A2, respectively). Moreover, in Table 1 column (4) we saw

that space places di↵ered from other locations in terms of their baseline levels on a number of

outcomes in our main analysis sample. When we trim the sample to only include locations

with pre-1958 patent counts near the median, the sample becomes much more balanced

on initial outcomes (Table 1 column (8)). We present our main results for manufacturing

employment using this limited sample in online appendix table A9 and find similar results.

Our conclusions are also robust to alternative inference procedures - clustering on county,

county ⇥ industry, state-industry and implementing a spatial HAC approach (see online

appendix table A8). Estimating similar models with the outcomes in levels (online appendix

table A10) gives a similar pattern of results. Finally, our results are also robust to defining

space places based on alternative approaches to measuring textual similarity between the

27Recent work by Akcigit, Hanley, and Serrano-Velarde (2021) argues that spillovers from basic research
are broader than those from applied research.

28Jones and Summers (2020) survey the literature and conclude that delays of three to six years appear
reasonable, 10 year delays are conservative, but basic research delays may be longer, up to 20 years. Similarly,
in the context of agricultural research innovations, Kantor and Whalley (2019) find spatial di↵usion delays
in the United States after 1920 of about 10 years.
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intelligence documents and patents (online appendix table A11).

We separately estimate own- and cross-industry exposure e↵ects in appendix table A12

to see how concentrated the e↵ects are in technology space. Columns (1) to (3) reveal that

the e↵ects of technologically distant R&D are almost 50% larger than own-industry R&D in

our value added models. For employment we find that own- and other-industry e↵ects are

quite similar in columns (4) to (6).29

Prior Trends. A potential lingering concern with our estimates is that NASA activity

may have been endogenous to local outcomes. It could be the case, for example, that NASA

was harvesting technologies by responding to unobserved productivity shocks within an

industry-county cell. While our reading of the historical evidence indicates that NASA did

not follow trends in the productivity of manufacturing firms or of specific locations because

of the imperative to win the race to the Moon, exploring prior trends is an important

specification check.

We graphically present dynamic versions of our main econometric model with 1958 as

the reference year in Figure 5 and report the coe�cients in online appendix Table A13.30

The results from this analysis reveal little evidence of prior trends. The coe�cients of the

1947 and 1954 interactions are very close to zero and not statistically di↵erent from zero at

any conventional confidence level. These results lend additional credibility to our research

design.

Military Activity and Skills. The Cold War period in the United States featured

dramatic expansions in military-sponsored research and skill accumulation. Both factors

29That our estimates indicate roughly a third to one half of the overall e↵ects we estimate are attributable
to cross-industry spillovers lines up closely with patent-based spillover e↵ect estimates. Azoulay, Gra↵ Zivin,
Li, and Sampat (2019) find that spillover e↵ects from NIH funding to non-targeted diseases account for
about half the overall e↵ects. Myers and Lanahan (2021) find that nearly two-thirds of net patent output is
related to technologies that are not very similar to the original objectives as stipulated in the Department
of Energy’s Funding Opportunities Announcements. This similarity suggests that manufacturing outcomes
can well capture both narrowly focused as well as broader cross-technology domain spillovers. Our main
estimates in Table 3 account for both e↵ects.

30The model we estimate is:

log(Yijt) =↵1 +
1992X

k=1947,k 6=1958

�kSpace Placei,<1958 ⇥Year=kt+

�i + �t +Total Pre-1958 Patentsi ⇥ �t + ⌫ijt.

(4)

where Y ear = kt is a dummy variable that takes a value of one for manufacturing census year k and is zero
otherwise. The excluded year is manufacturing census year 1958. Other variables are defined as in equation
(3).
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may have been important for the growth of manufacturing output and potentially correlated

with the rise of NASA activity itself. A simple approach to address this concern is to control

for these factors at the county or preferably county⇥industry level.

In panel A of Table 4 we add controls for military activity. We utilize newly-digitized

data on government-sponsored patents in this period from Fleming et al. (2019) to measure

Army and Navy patents at the county level. Controlling for these patents in columns (1) and

(2) of Table 4-Panel A does little to alter our value added estimates.31 Another important

control to consider is county-level military spending.32 Controlling for county-level military

spending in column (3) also has little e↵ect on our value added results. Our last model takes

advantage of data on a cross section of research scientists in 1962 that include information

on their location and whether they received military funding for their research. When we

add controls for defense scientist⇥year fixed e↵ects in column (4), our value added results

again change little. The results for employment in columns (5) to (8) of Table 4-Panel A are

similarly robust.

In panel B of Table 4 we add controls for worker skill. In column (1) we add controls

for the fraction of manufacturing workers who were non-production workers and the value

added results change little. This measure of skill has the advantage that it is measured

at the same unit of observation as our outcome variable – county ⇥ industry ⇥ year. It

has the disadvantage, however, that it likely captures occupational, as well as educational

attainment, variation. The variable also likely captures little variation in upper-tail skill that

may matter for growth (Squicciarini and Voigtländer 2015). In column (2) we add a control

for the number of research scientists in 1962⇥year to capture di↵erential trends in the upper-

tail of human capital accumulation. Similarly, in column (3) we add a control for the number

of IBM mainframes in 1961⇥year to capture di↵erential trends based on the installation of

advanced information technology in a location, which may reflect a highly skilled population.

Finally, we add controls for high school graduate percentage in 1960⇥year. The value added

results remain largely unchanged across these experiments. The results for employment in

columns (5) to (8) of Panel B are similarly robust. In sum, our results appear highly robust

to controls for military activity and local human capital characteristics.

Rates of Return. A strength of our approach is that we can recover estimates of the

31This result may be expected as the spatial correlation between military patents and NASA patents turns
out to be quite small. See online appendix Table A6.

32A county-level measure is unavailable before 1966, so we create a county-level series back to 1940 using
annual state-level defense spending allocated to counties based on their actual shares of contracting within
their respective states in 1967 (see details in the data appendix).
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marginal rate of return to NASA R&D spending from output (and productivity, below)

estimates directly. We follow Jones and Summers (2020) in computing the internal rate of

return to capture the social rate of return to R&D spending. As space spending and resulting

e↵ects on output had a specific time path of initially high costs with benefits coming later, we

use the calculation in appendix section 3 rather than Summers and Jones’s (2020) balanced

growth path approach to compute these estimates.

Using our preferred estimates in column (3) of Table 3 we find an internal rate of return

of 34% over our sample period. We regard our estimate to be a lower bound since it does not

include international or even inter-regional spillovers. Myers and Lanahan (2021) find that

local spillovers only account for just under half of total spillovers.33 Our estimates also do

not incorporate e↵ects outside the manufacturing sector. While we expect these to be small

based on the historical accounts and technologies where NASA was active, they are another

unaccounted for impact. Lastly, common issues associated with measuring inflation, such as

substitution bias, product improvement, and the introduction of new goods, can a↵ect our

ability to measure real output accurately simply using value added.34

In terms of putting our rate of return estimate into some perspective, one comparison

would be the return on risky assets that could be an alternative investment option since the

Moon mission was certainly risky. Jordà, Knoll, Kuvshinov, Schularick, and Taylor (2019)

find that the risky rate of return across many counties and time periods is about 7%. Our

estimate of the social rate of return to research – despite being a lower bound – is over 4

times larger than this. Our estimated rate of return is comparable to much of the literature.

Griliches (1992) summarizes estimated rates of return to public R&D in the agricultural

sector at 20-67%. Bloom, Schankerman, and Van Reenen (2013) estimate a social return

to private R&D at 55%. Our estimate is smaller than Myers and Lanahan (2021) who find

marginal social returns to R&D about 100–300% of the marginal private returns, though

they note their setting is likely to yield an upper bound.

Multipliers. To compare the e↵ects of public R&D spending relative to government

expenditures in general, we compute the contemporaneous fiscal multiplier.35 We use the es-

33We incorporate inter-regional spillovers below by incorporating market level e↵ects in our analysis. In
a similar vein, Moretti, Steinwender and Van Reneen (2021) find meaningful international spillovers from
R&D.

34Advances in product quality and the introduction of new goods have been estimated to lead inflation to
be overstated by about 0.65% per year (Gordon 2000), for example.

35See Ramey (2021) for calibrations of long-term multiplier e↵ects under alternative models as well as a
summary of the multiplier literature with respect to public capital. Her work shows long-term multipliers
are larger when the public investment has larger e↵ects on productivity and the economy is initially below
the socially optimal level of public investment. Public R&D may be expected to have a larger rate of return
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timates in Table 3 column (3) to compute: Space Race Output E↵ect = �̂2⇥Value Addedijt⇥
Output-Value Added Ratioijt and analogously a Post-Space Race Output E↵ect = �̂3 ⇥
Value Addedijt ⇥ Output-Value Added Ratioijt. In other words, this measure computes

the local value added e↵ect for space places from Table 3 times the sample mean of value

added scaled up by the output/value added ratio. We do not have total output in man-

ufacturing before 1967, so we scale our value added estimates up by this fraction to find

an implied total manufacturing output e↵ect. We also compute Space Race Spending E↵ect

= ↵̂2 ⇥ NASA Spendingijt and Post-Space Race Spending E↵ect = ↵̂3 ⇥ NASA Spendingijt
using estimates in Table 2 column (3). Our local fiscal multiplier estimates are then Local

Space Race Multiplier = Space Race Output E↵ect
Space Race Spending E↵ect and Local Post-Space Race Multiplier

= Post-Space Race Output E↵ect
Post-Space Race Spending E↵ect.

We obtain an implied local fiscal multiplier for public R&D of 2.4 during the Space Race

(i.e., 1958 to 1972, inclusive) and 3.8 after the Space Race (i.e., after 1972). We focus on

the post-Space Race multiplier as that statistical evidence is stronger. Our post-Space Race

multiplier is notably larger than the cross-sectional estimates in the literature. A recent

survey (Chodorow-Reich 2019) indicates that the literature supports a local fiscal multiplier

of 1.8. Our estimates are also larger than time-series based national multiplier estimates.

Ramey (2011) finds that time-series evidence supports estimates ranging from 0.5 or 2.0.

Our contemporaneous local multiplier estimates are subject to many caveats. First, by

comparing within-era expenditures to within-era manufacturing output we are not account-

ing for the potential dynamic e↵ects of Space Race-era research and development on later

economic outcomes. Such an issue could be dissatisfying if productivity, follow-on innova-

tion, or capital investment responded to public R&D with a lag as we might expect, assuming

of course that these responses generated increases in value added. Second, our calculation

does not account for the e↵ect of NASA research on output in other sectors or locations,

or how the expenditure was financed. Third, our estimates could be state dependent. The

1960s was generally a decade of economic growth, so our estimated e↵ects could be relatively

smaller than those that would have otherwise been generated in the late 1970s and 1980s

when growth was slower. While keeping these caveats in mind our local fiscal multiplier

estimates are notably larger than the fiscal multiplier estimates in the literature.

One possible reason that our local fiscal multipliers are larger than estimates in the

literature is that public R&D may have had a range of multiplier-augmenting responses not

present for other types of government spending. Public R&D related to spaceflight may have

than other types of public spending as these conditions are more likely to be met in the public R&D case.
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generated new technologies that made local firms involved in the research and development

more productive, thus increasing their output. Such targeted R&D may have produced

discoveries that were augmented by local private sector firms, thus also increasing output.

We turn to examining these possible local productivity spillover e↵ects next.

Measured Productivity. In Table 5 we test for local spillover e↵ects from public

R&D onto measured productivity. We measure total factor revenue based productivity by

estimating the production function Yijt = AijtK
�1j

ijt L
�2j

ijt allowing factor shares to be industry

specific to recover manufacturing revenue total factor productivity at the industry-county-

year level, Aijt. A limitation of our approach is that because we only have a few years of

data before the launch of Sputnik and our panel is unbalanced, we are unable to address

the concern that firms chose inputs in response to unobserved productivity shocks. For this

limitation to be an important source of bias for our analysis it would need to be the case

that unobserved productivity shocks unrelated to the Space Race were correlated with NASA

activity. Based on our results above and the historical evidence, we view this concern to be

unlikely.

In columns (1) to (4) of Table 5 we find that space places experienced larger increases in

productivity during and after the Space Race. These e↵ects are statistically significant with

the exception of column (4), which includes industry ⇥ year fixed e↵ects.

Conducting a similar internal rate of return calculation using the productivity impacts

reported in Table 5 column (3) gives an estimate of 22%. Calculating internal rates of

return using productivity, rather than output, e↵ects could be preferred; however, there are

important limitations with our productivity measure to note. Because we measure revenue

productivity rather than physical productivity our estimates may pick up changes in markups

or product quality as well as physical productivity. This concern is likely to be salient in the

short term as the Space Race was an important demand shock that likely a↵ected prices in

an industry with significant barriers to entry. Thus, our measure of TFP would increase even

if physical productivity did not change. We address the problem of industry specific price

changes by including year⇥industry fixed e↵ects. Output price e↵ects of NASA activity may

still remain a problem for our local estimates if demand is spatially concentrated. We would

not expect these local price e↵ects to persist, however, as firms entered high markup markets

over the longer term. The fact that our post-Space Race productivity e↵ects are larger

suggests that they were not primarily driven by price e↵ects. A second issue is that because

we do not have a balanced panel we cannot address the potential biases in productivity

estimation from firms’ endogenous choices of inputs in response to unobserved productivity
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shocks.

5 Spatial Spillovers of Public R&D

Our estimated value added e↵ects could be large because they represent local rather than

national e↵ects. Local estimates would overstate national e↵ects if, for example, labor was

supplied elastically and workers migrated toward space places from other locations. Such an

increase in employment in space locations would come at the cost of reduced employment

elsewhere.36 Such worker mobility would be consistent with historical accounts and the fact

that adjustment through migration can take substantial time (Blanchard and Katz 1992).37

Alternatively, local estimates can understate national e↵ects if there are positive demand

or technology spillovers across areas.38 How spatial spillovers may have generated a wedge

between local and national e↵ects is an empirical question.

Inventor Migration. A central challenge with measuring migration responses during

the time period under consideration is lack of individual panel data.39 We attempt to

overcome these data shortcomings by using a disambiguated panel of patent inventors that

tracks their locations, following the procedures in Akcigit, Grigsby, Nicholas, and Stantcheva

(2022). We create an individual identifier for each U.S. inventor, using patent data covering

1945 to 1992. See online appendix section 2.3 for more details. Our analysis follows Moretti

and Wilson’s (2017) empirical approach with two di↵erences.40 First, we study county-

to-county migration flows and construct the data at the county ⇥ patent application year

level.41 Second, we include time-invariant measures of space technology scores interacted

36That migration can lead to di↵erent local versus national multipliers is discussed in Ramey (2019) and
Chodorow-Reich (2019); however, most evidence to date has focused on less persistent spending shocks and
does not find a substantial migration response. Our context may be more likely to lead to migration given
the persistence of the shock to local spending from NASA’s founding and continued operations as its missions
evolved in the Cold War era.

37For example, while almost all of the technical and clerical workers for the Manned Spacecraft Center in
Houston could be hired locally, only 10 percent of the 6,000 scientists, engineers, and administrators were
from the Houston area (Holman and Konkel 1968, 31-32). Similarly, within five years of opening the center,
over 125 technological firms that had a presence in the space field opened o�ces in Houston, including
some of the most prominent such as General Electric, Honeywell, IBM, North American Aviation, Lockheed,
Raytheon, Texas Instruments, and TRW (Brady 2007, 455).

38Myers and Lanahan (2021) find positive technological spillovers across space, and positive demand
spillovers are at the heart of the market access approach developed in Donaldson and Hornbeck (2016).

39The 1940s to 1960s is too recent for linked population Census data to be available and too early for
modern panel datasets, such as the PSID, that track an individual’s location.

40We choose to follow Moretti and Wilson (2017) instead of Akcigit, Grigsby, Nicholas, and Stantcheva
(2022) as the latter’s approach has a significant computational burden at the state level and we are using
even more fine-grained county-level data.

41In this context patent application year is preferred over patent grant year that we use above as it is
closer to the time period of innovation. We thus obtain a measure of location with less measurement error
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with space era dummies into our migration model.

Moretti and Wilson (2017) show that the equilibrium number of inventors who migrate

into a county as a function of location-based factors can be estimated as:

log

✓
Podt

Poot

◆
= ⌘1 ([log(Space Scored)� log(Space Scoreo)]⇥ Space Racet)

+ ⌘2 ([log(Space Scored)� log(Space Scoreo)]⇥ Post-Space Race Erat)

+ ⌘3[log(1� Idt)� log(1� Iot)] + ⌘4[log(1� Cdt)� log(1� Cot)]

+ ⌘5[log(1 +Rdt)� log(1 +Rot)] + �t + �o + �d+

+ �od + Pre-1958 Patents0 ⇥ �t + Pre-1958 Patentsd ⇥ �t + uodt.

(5)

We denote origin locations o and destination locations d. The number of inventors who

move from o to d is Podt and the number of inventors who begin in o and do not move

is Poot, so that log
⇣

Podt
Poot

⌘
is the log odds ratio for inventor out-migration. We examine

how the odds of moving depend on the di↵erences in space scores, (log(Space Scored) �
log(Space Scoreo)), interacted with indicator variables for the Space Race era and post-race

periods (Space Race Erat and Post-Space Race Erat, respectively). We control for origin-

destination di↵erentials in personal income tax rates, ([log(1� Idt)� log(1� Iot)]), corporate

income tax rates, ([log(1�Cdt)� log(1�Cot)]), and R&D tax credits, ([log(1+Rdt)� log(1+

Rot)]). Finally, we control for county origin (�o) and destination (�d) fixed e↵ects, year of

patent application (�t) fixed e↵ects, as well as pair fixed e↵ects (�od) to capture time invariant

pair specific features such as distance or travel costs.42 To account for trends by initial

innovation intensity, as in our analysis above, we also control both origin and destination

pre-1958 patents times year fixed e↵ects (Pre-1958 Patentso⇥�t and Pre-1958 Patentsd⇥�t,

respectively). We consider a few variants of this specification - with and without tax rates

and including state ⇥ year fixed e↵ects - in our analysis.

The coe�cient estimates ⌘1 and ⌘2 capture how the relationship between space score

di↵erentials between origin and destination places a↵ected migration during and after the

Space Race relative to the pre-NASA era. If NASA spending caused inventors to migrate

toward space places, then we would expect ⌘1 and ⌘2 to be positive. Time invariant factors

that a↵ected wages or amenities in the origin and destination locations, as well as typical

by using application year instead of grant year.
42For this analysis, we follow Moretti and Wilson (2017) in showing standard errors that allow for three-way

clustering by origin county ⇥ year, destination county ⇥ year, and origin-destination pair. This clustering
addresses the issues that errors could be correlated across origin (destination) counties within a year because
they share the same level of space technology similarity in all observations involving that origin (destination)
county in a year. In addition, standard errors may be correlated over time within the panel.
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migration patterns, are controlled using origin, �o, and destination, �d, and pairwise �od

fixed e↵ects. A potential threat to our approach is that changes in wages or amenities were

correlated with di↵erentials in space place likelihood during and after the Space Race. Based

on our results above and historical accounts, we do not expect this to be likely.

Table 6 reports the results of estimating alternative versions of our migration model. In

column (1) we see that inventors moved toward areas with higher space scores in the post-

Space Race period. Adding controls for personal tax rates, corporate tax rates, and R&D

tax credits in column (2) does little to alter these results. Finally, column (3) adds origin

state ⇥ application year and destination state ⇥ application year fixed e↵ects.43 Across all

of these specifications our results change little and the robust conclusion is that Space Race

spending led to inventors’ migration toward opportunity.

Including Market E↵ects. How might migration, demand and technology spillovers

combine to a↵ect the national return to R&D spending? To address this question we incor-

porate market level e↵ects of R&D that reflect a wedge between local and national e↵ects

driven by R&D spending in other counties. These market level e↵ects are derived in an

extension to the simple county-to-county trade model from Donaldson and Hornbeck (2016)

in online appendix section 4.44 We use our model to obtain the estimating equation:

log(Yijt) =�1 + �2Space Placei,<1958 ⇥ Space Racet + �3Space Placei,<1958 ⇥ post-Space Racet+

�4High Space Marketi,<1958 ⇥ Space Racet + �5High Space Marketi,<1958 ⇥ Post-Space Racet

+ �i + �t +Total Pre-1958 Patentsi ⇥ �t + Si ⇥ �t + ⌫ijt.

(6)

We define High Space Marketi,<1958
as a binary variable where counties with above median

values of our space-score-based market measure receive a value 1, and other counties receive a

zero. For details of how this variable is constructed see online appendix section 4.2. Our goal

is to estimate �4 and �5 which will capture the market-level e↵ects of Space Race activity

elsewhere during and after the race to the Moon. With these estimates in hand we can

get a sense of how spatial spillovers may a↵ect our estimates of the fiscal multiplier and

43Migration elasticities may be heterogeneous. Our focus on the same sample of inventors - in the top
5% of lifetime patent inventors - follows Moretti and Wilson (2017) as locations may be better measured for
persistent patent authors. However, using the top 5% to construct the sample of inventors is arbitrary, but
we present results for top 25% and top 50% lifetime inventors in the appendix tables A14 and A15. The
results are largely consistent regardless of the sample construction.

44This approach allows us to quantify national e↵ects, while maintaining research design credibility typ-
ically found in reduced-form studies. We di↵er from Donaldson and Hornbeck (2016), however, in that we
focus on the impact of public R&D spending, holding transportation infrastructure fixed and introducing
market-level consumption externalities.
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implied rate of return reported above. For these models that use both local and market

level variation to estimate the e↵ects of space activity, we cluster the standard errors at the

state-industry level.

In Table 7 we report the results of estimating equation (6). In column (1) we report

our baseline value added local e↵ects model for reference (i.e., drawn from Table 3, column

(3)). In column (2) we report value added market e↵ects only; and column (3) combines

both. Here we see positive market e↵ects during the Space Race, which would be expected

with cross-county demand or productivity spillovers. In the post-Space Race era we find no

market e↵ects. A lack of market e↵ects in the longer term would be consistent with the worker

mobility toward space places described above, which seem to have outweighed any market-

level demand or technology spillover e↵ects. Similar results are present for employment in

columns (3)-(5).

The results in Table 7 indicate that positive market e↵ects seem to amplify the positive

local e↵ects related to NASA R&D during the Space Race era, but the market e↵ects seem

to attenuate in the longer term. Using the estimates in column (3) of the table and applying

the output to value added adjustment noted above, we re-calculate the implied Space Race

multiplier for a county to be 4.3 and the post-Space Race multiplier to be 4.1 when market

e↵ects are included.45 Our post-space race national multipliers are again larger than the

literature. Our internal rate of return estimate is larger that those above because the positive

and statistically significant market e↵ects during the Space Race expands the number of time

periods with a positive e↵ect.46 Our results suggest that incorporating spatial spillovers does

not lower the estimated impact of NASA R&D spending.

6 Conclusion

Landing on the Moon in 1969 represented a critical moment for boosting American tech-

nological capabilities and leadership. Looking to this iconic Moonshot event, our paper

45We obtain the national multiplier implied for county i using the estimates in Table 7 to compute:
SpaceRaceOutputE↵ect = (�̂2 ⇥ Value Addedijt + �̂4 ⇥ �SpaceMarketijt) ⇥ Output-Value Added Ratioijt
where �SpaceMarketijt is the sample average di↵erence in SpaceMarketo ⇡

P
d ⌧

�✓d
od SpaceSpending✓d

between space place and non-space place counties. Analogously, Post � SpaceRaceOutputE↵ect = (�̂3 ⇥
Value Addedijt + �̂5 ⇥ �SpaceMarketijt) ⇥ Output-Value Added Ratioijt. We divide the output e↵ect by
the relevant spending e↵ect to obtain the implied multiplier.

46Using these estimates accounting for market e↵ects, we obtain an internal rate of return estimate of
191% over our sample period. This estimate is comparable to the results in Myers and Lanahan (2021).
Important caveats to our spatial spillover approach include: (1) an approximated market access term; (2)
obtaining nationwide e↵ects from a representative county; (3) defining markets regionally; and (4) not
including follow-on innovation or international spillovers.
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seeks to address fundamental questions about the role of public R&D in facilitating eco-

nomic growth. Despite its focal point as a shining example of American R&D investment

and accomplishment, there is no credible empirical estimate of the space mission’s contribu-

tion to economic growth. Using newly-collected data and a novel identification strategy that

takes advantage of the geopolitical tensions of the historic moment, we uncover relatively

large, stable, and precisely estimated e↵ects of public R&D on long-term manufacturing

growth. The implied rate of return to public R&D spending related to space exploration was

over 20% – significantly larger than typical costs of financing. In terms of fiscal multipliers,

our estimates are double those found from most types of government spending.

Economists have long sought to untangle the multiple factors that contribute to eco-

nomic growth. The roles of public and private sector R&D, human and physical capital

investment, transportation and communications infrastructure, culture, geography, political

and legal institutions, and even luck have been carefully explored and debated. Our analysis

of the Space Race and its aftermath indicates an important role for public policy and public

R&D in generating economic growth. Today the U.S. government invests a tiny fraction

in non-military R&D relative to the heights of the Cold War. The economic impacts of

the politically-charged Space Race Era provides some credence to some policymakers and

advisors’ calls for a new Sputnik Moment to seed a new era of U.S. economic growth and

international leadership.
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 TA

B
LE 1: D

escriptive Statistics of Pre-Space R
ace Era 

Sam
ple: 

Full 
Trim

m
ed –  

D
rop < 25

th and > 75
th Percentile of Pre 1958 Patents 

 
 

Space Place Score
i,<1958  

 
 

Space Place Score
i,<1958  

 
 

A
ll 

>=M
edian 

<M
edian 

D
ifference 

A
ll 

>=M
edian 

<M
edian 

D
ifference 

 
(1) 

(2) 
(3) 

(4) 
(5) 

(6) 
(7) 

(8) 
 

Panel A: M
anufacturing Census D

ata 
V

alue A
dded ($1958 M

illion) 
34 

(92) 
43 

(117) 
23 

(40) 
0.010 

23 
(32) 

23 
(31) 

24 
(33) 

0.735 

Em
ploym

ent (1958) 
3,779 

(9,430) 
4,712 

(12,072) 
2,617 

(3,988) 
0.010 

2,559 
(3,077) 

2,509 
(2,955) 

2,606 
(3,192) 

0.716 

Labor Incom
e  ($1958) 

4,390 
(1,057) 

4,448 
(1,050) 

4,303 
(1,061) 

0.032 
4,629 
(908) 

4,643 
(895) 

4,615 
(920) 

0.755 

Capital Investm
ent  ($1958 ‘000’s) 

1,821 
(5,796) 

2,078 
(5,734) 

1,502 
(5,854) 

0.184 
1,399 

(4,090) 
1,155 

(2,086) 
1,634 

(5,345) 
0.065 

 
Panel B: Annual Patent D

ata  
Total Patents (1958) 

43 
(191) 

60 
(257) 

26 
(80) 

0.012 
37 

(41) 
38 

(46) 
36 

(36) 
0.622 

N
avy Patents (1958) 

0.03 
(0.16) 

0.04 
(0.20) 

0.01 
(0.10) 

0.013 
0.04 

(0.18) 
0.04 

(0.20) 
0.03 

(0.16) 
0.509 

A
rm

y Patents (1958) 
0.02 

(0.16) 
0.02 

(0.19) 
0.01 

(0.11) 
0.431 

0.01 
(0.12) 

0.01 
(0.13) 

0.01 
(0.10) 

0.984 

 
Panel C:Population Census and O

ther County D
ata 

Population (1960) 
169,372 

(379,436) 
213,654 

(501,211) 
124,979 

(181,323) 
0.001 

217,071 
(185,365) 

223,647 
(193,187) 

210,332 
(177,541) 

0.575 

H
igh School G

raduate Percent (1960) 
46 

(209) 
40 

(10) 
53 

(295) 
0.370 

43 
(7) 

44 
(8) 

42 
(6) 

0.013 

Research Scientists (1962) 
741 

(2,485) 
965 

(2,991) 
517 

(1,819) 
0.011 

1,331 
(3,105) 

1,446 
(3,294) 

1,222 
(2,909) 

0.584 

IBM
 M

ainfram
e C

om
puters (1961) 

0.43 
(1.62) 

0.57 
(1.89) 

0.28 
(1,29) 

0.011 
0.67 

(1.93) 
0.75 

(1.97) 
0.58 

(1.89) 
0.488 

N
o. of Counties 

791 
396 

395 
 

245 
124 

121 
 

N
otes: D

ata are draw
n from

 N
ational Intelligence E

stim
ates, C

ensus of M
anufacturers, C

ensus of Population, U
nited States Patent and T

radem
ark O

ffice, N
ational R

oster of Scientific and T
echnical Personnel and IB

M
 m

ainfram
e data, as described in the data appendix.  

T
he Space Place Score is the	 "! # as discussed in section 2.2 of the appendix.  T

he unit of observation is county × 2-digit SIC
 industry in panel A

 and county in panels B
 and C

.  In colum
ns (1),(2),(3),(5),(6), and (7) the m

ain entries are m
eans for the variables indicated 

w
ith standard deviations in parentheses.  C

olum
n (4) reports the p-value for the hypothesis test that the values in (2) and (3) are different.   C

olum
n (8) reports the p-value for the hypothesis test that the values in (6) and (7) are different.  C

olum
ns (1)-(4) are for the full 

sam
ple for 1958.  C

olum
ns (5)-(8) are for the trim

m
ed sam

ple that drops locations w
ith m

ore than 75
th percentile level of pre-1958 patents and less than the 25

th percentile of pre-1958 patents.    
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 TA

B
LE 2: Space Places, N

A
SA

 Spending, and N
A

SA
 patents 

D
ependent V

ariable = 
A

rsinh(N
A

SA
 Spending) 

A
rsinh(N

A
SA

 Patents) 
 

(1) 
(2) 

(3) 
(4) 

(5) 
(6) 

 
 

 
 

 
 

 
Space Place

i,<1958  × Space Race
t 

0.75 
(0.28) 

0.39 
(0.24) 

0.43 
(0.23) 

0.04 
(0.01) 

0.02 
(0.01) 

0.03 
(0.01) 

Space Place
i,<1958 × Post-Space Race

t 

 
0.81 

(0.26) 
0.57 

(0.23) 
0.66 

(0.23) 
0.06 

(0.02) 
0.04 

(0.01) 
0.04 

(0.01) 
County Fixed Effects 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
ear Fixed Effects 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Pre-1958 Patents × Y
ear Fixed Effects 

 
Y

 
Y

 
 

Y
 

Y
 

State × Y
ear Fixed Effects 

 
 

Y
 

 
 

Y
 

R
2 

0.48 
0.52 

0.56 
0.44 

0.51 
0.56 

N
otes: D

ata are draw
n from

 N
ational Intelligence E

stim
ate, N

A
SA

 H
istorical D

ata B
ook, and U

nited States Patent and T
radem

ark data from
 1947 to 1992, as described in the data appendix.  E

ach colum
n in the table reports the results from

 estim
ating one version of 

equation (1) in the text.  Space Placei,<1958 is an indicator variable reflecting a county’s being above m
edian in term

s of the sim
ilarity betw

een the technologies present in pre-1958 patents and the N
ational Intelligence E

stim
ates of Soviet Space C

apabilities betw
een 1958 

and 1992 (the Space Score), as described in the text and the appendix.  Space R
ace years are 1963, 1967 and 1972.  Post-Space R

ace years are 1977, 1982, 1987, and 1992.  T
he unit of observation is county × year.  T

he m
odels in colum

ns (1) and (4) includes county 
and year fixed effects, the m

odels in colum
ns (2) and (5) also include the count of pre-1958 patents in a county × year fixed effects, and the m

odels in colum
ns (3) and (5) also include state × year fixed effects.  D

ependent variables are transform
ed using the inverse 

hyperbolic sine:$%&'(ℎ (+ )=
ln0++

√ +
"+

14.  Standard errors are clustered at the county level.  A
ll m

odels have 7,910 county-year observations and 791 county observations. 

TA
B

LE 3: Space Places, V
alue A

dded, and Em
ploym

ent 

D
ependent V

ariable = 
Log(V

alue A
dded) 

Log(Em
ploym

ent) 
 

(1) 
(2) 

(3) 
(4) 

(5) 
(6) 

(7) 
(8) 

 
 

 
 

 
 

 
 

 
Space Place

i,<1958  × Space Race
t 

0.06 
(0.03) 

0.07 
(0.03) 

0.06 
(0.03) 

0.05 
(0.03) 

0.07 
(0.03) 

0.07 
(0.03) 

0.06 
(0.03) 

0.05 
(0.03) 

Space Place
i,<1958  × Post-Space Race

t 

 
0.12 

(0.04) 
0.14 

(0.04) 
0.14 

(0.04) 
0.14 

(0.04) 
0.13 

(0.03) 
0.13 

(0.04) 
0.13 

(0.04) 
0.13 

(0.03) 
County Fixed Effects 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
ear Fixed Effects 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Pre-1958 Patents × Y
ear Fixed Effects 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

State × Y
ear Fixed Effects 

 
Y

 
Y

 
Y

 
 

Y
 

Y
 

Y
 

Industry Fixed Effects  
 

 
Y

 
Y

 
 

 
Y

 
Y

 
Industry × Y

ear Fixed Effects 
 

 
 

Y
 

 
 

 
Y

 
R

2 
0.36 

0.37 
0.50 

0.52 
0.34 

0.35 
0.46 

0.48 
N
otes: D

ata are draw
n from

 N
ational Intelligence E

stim
ate, C

ensus of M
anufactures, and U

nited States Patent and T
radem

ark data from
 1947 to 1992, as described in the data appendix.  E

ach colum
n in the table reports the results from

 estim
ating one version of 

equation (2) in the text.  Space Placei,<1958 is an indicator variable reflecting a county’s being above m
edian in term

s of the sim
ilarity betw

een the technologies present in its pre-1958 patents and the N
ational Intelligence E

stim
ates of Soviet Space C

apabilities betw
een 

1958 and 1992, as described in the text and appendix.  Space R
ace years are 1963, 1967 and 1972.  Post space race years are 1977, 1982, 1987, and 1992.  T

he unit of observation is 2-digit SIC
 industry × county × year.  T

he m
odels in colum

ns (1) and (5) includes 
county and year fixed effects, and the count of pre-1958 patents in a county × year fixed effects.  T

he m
odels in colum

ns (2) and (6) also include state × year fixed effects; colum
ns (3) and (7) also include industry fixed effects; and the m

odels in colum
ns (4) and (8) 

further include industry × year fixed effects.  Standard errors are clustered at the 2-digit SIC
 industry-county level.  A

ll m
odels have 26,862 2-digit SIC

 industry × county × year observations, 20 2-digit SIC
 industries, and 791 county observations. 
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  TA

B
LE 4: Space Places, V

alue A
dded, and Em

ploym
ent: M

ilitary and Skill C
ontrols 

D
ependent V

ariable = 
Log(V

alue A
dded) 

Log(Em
ploym

ent) 
 

(1) 
(2) 

(3) 
(4) 

(5) 
(6) 

(7) 
(8) 

Panel A: M
ilitary C

ontrols 
 

 
 

 
 

 
 

 
Space Place

i,<1958  × Space Race
t 

0.05 
(0.03) 

0.05 
(0.03) 

0.05 
(0.03) 

0.05 
(0.03) 

0.06 
(0.03) 

0.06 
(0.03) 

0.06 
(0.03) 

0.06 
(0.03) 

Space Place
i,<1958  × Post-Space Race

t  
0.14 

(0.04) 
0.13 

(0.04) 
0.13 

(0.04) 
0.13 

(0.04) 
0.13 

(0.04) 
0.13 

(0.04) 
0.13 

(0.04) 
0.12 

(0.04) 
A

dditional Controls: 
 

 
 

 
 

 
 

 
A

rm
y Patents 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

N
avy Patents 

 
Y

 
Y

 
Y

 
 

Y
 

Y
 

Y
 

M
ilitary Spending 

 
 

Y
 

Y
 

 
 

Y
 

Y
 

1962 D
efense Scientist × Y

ear Fixed Effects 
 

 
 

Y
 

 
 

 
Y

 
R

2 
0.50 

0.50 
0.50 

0.50 
0.46 

0.46 
0.46 

0.46 
 Panel B: Skill Controls 

 
 

 
 

 
 

 
 

Space Place
i,<1958  × Space Race

t 
0.06 

(0.03) 
0.06 

(0.03) 
0.06 

(0.03) 
0.06 

(0.03) 
0.07 

(0.03) 
0.06 

(0.03) 
0.06 

(0.03) 
0.06 

(0.03) 
Space Place

i,<1958  × Post-Space Race
t  

0.13 
(0.04) 

0.13 
(0.04) 

0.13 
(0.04) 

0.12 
(0.04) 

0.13 
(0.04) 

0.12 
(0.04) 

0.12 
(0.04) 

0.11 
(0.04) 

A
dditional Controls: 

 
 

 
 

 
 

 
 

N
on-Production W

orker Share 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
1962 Research Scientist × Y

ear Fixed Effects 
 

Y
 

Y
 

Y
 

 
Y

 
Y

 
Y

 
1961 IBM

 M
ainfram

es × Y
ear Fixed Effects 

 
 

Y
 

Y
 

 
 

Y
 

Y
 

1960 H
igh School G

raduate × Y
ear FEs 

 
 

 
Y

 
 

 
 

Y
 

R
2 

0.51 
0.51 

0.51 
0.51 

0.47 
0.47 

0.47 
0.48 

N
otes: D

ata are draw
n from

 N
ational Intelligence E

stim
ates, C

ensuses of M
anufactures and Population, U

nited States Patent and T
radem

ark data from
 1947 to 1992, U

nited States D
epartm

ent of D
efense, N

ational R
oster of Scientific and T

echnical Personnel, and IB
M

 
m

ainfram
e data, as described in the data appendix.  E

ach colum
n in a panel reports the results from

 estim
ating one version of equation (2) in the text.  Space Placei,<1958 is an indicator variable reflecting a county’s being above m

edian in term
s of the sim

ilarity betw
een 

the technologies present in its pre-1958 patents and the N
ational Intelligence E

stim
ates of Soviet Space C

apabilities betw
een 1958 and 1992, as described in the text and appendix.  Space R

ace years are 1963, 1967 and 1972.  Post-Space race years are 1977, 1982, 1987, 
and 1992.  T

he unit of observation is 2-digit SIC
 industry × county × year.  In panel A

 the m
odels colum

ns (1) and (5) includes county and year fixed effects, the count of pre-1958 patents in a county × year fixed effects, state × year fixed effects, and A
rm

y patents; the 
m

odels in colum
ns (2) and (6) also include N

avy patents; the m
odels in colum

ns (3) and (7) also include m
ilitary spending; and the m

odels in colum
ns (4) and (8) further include the 1962 count of defense funded research scientists × year fixed effects.  In panel B

 the 
m

odels colum
ns (1) and (5) includes county and year fixed effects, the count of pre-1958 patents in a county × year fixed effects, state × year fixed effects, and non-production w

orker share; the m
odels in colum

ns (2) and (6) also include the 1962 count of research 
scientists × year fixed effects; the m

odels in colum
ns (3) and (7) also include count of num

ber of 1961 IB
M

 m
ainfram

es × year fixed effects; and the m
odels in colum

ns (4) and (8) further include the percentage of the population in 1960 w
ith a term

inal high school 
education × year fixed effects.  Standard errors are clustered at the 2-digit SIC

 industry-county level.  A
ll m

odels have 26,862 2-digit SIC
 industry × county × year observations, 20 2-digit SIC

 industry, and 791 county observations. 
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  TA

B
LE 5: Space Places and M

easured Productivity 

Sam
ple = 

Full 
Trim

m
ed 

 
(1) 

(2) 
(3) 

(4) 
(5) 

(6) 
(7) 

(8) 
 

 
 

 
 

 
 

 
 

Space Place
i,<1958  × Space Race

t 
0.04 

(0.02) 
0.04 

(0.02) 
0.03 

(0.02) 
0.01 

(0.01) 
0.09 

(0.02) 
0.09 

(0.02) 
0.08 

(0.02) 
0.06 

(0.02) 
Space Place

i,<1958  × Post-Space Race
t 

  

0.05 
(0.02) 

0.05 
(0.02) 

0.05 
(0.02) 

0.03 
(0.02) 

0.08 
(0.03) 

0.08 
(0.03) 

0.06 
(0.03) 

0.05 
(0.02) 

County Fixed Effects 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

ear Fixed Effects 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Pre-1958 Patents × Y

ear Fixed Effects 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
State × Y

ear Fixed Effects 
 

Y
 

Y
 

Y
 

 
Y

 
Y

 
Y

 
Industry Fixed Effects  

 
 

Y
 

Y
 

 
 

Y
 

Y
 

Industry × Y
ear Fixed Effects 

 
 

 
Y

 
 

 
 

Y
 

R
2 

0.76 
0.77 

0.78 
0.81 

0.76 
0.78 

0.78 
0.81 

N
otes: D

ata are draw
n from

 N
ational Intelligence E

stim
ates, C

ensus of M
anufactures, and U

nited States Patent and T
radem

ark data from
 1947 to 1992, as described in the data appendix.  E

ach colum
n in the table reports the results from

 estim
ating one version of 

equation (2) in the text.   T
he outcom

e variable is M
easured Productivity com

puted as total factor productivity estim
ated using a C

obb-D
ouglas m

odel w
ith industry specific factor shares as described in the online appendix section 1.1.  Space Placei,<1958 is an indicator 

variable reflecting a county being above m
edian in term

s of the sim
ilarity betw

een the technologies in pre-1958 patents and the N
ational Intelligence E

stim
ates of Soviet Space C

apabilities betw
een 1958 and 1992, as described in the text.  Space R

ace years are 1963, 
1967 and 1972.  Post-Space R

ace years are 1977, 1982, 1987, and 1992.  T
he unit of observation is 2 digit SIC

 industry × county × year.  T
he m

odels in colum
ns (1) and (5) includes county, year fixed effects, and the count of pre-1958 patents in a county × year fixed 

effects, the m
odels in colum

ns (2) and (6) also include state × year fixed effects, the m
odels in colum

ns (4) and (7) also include industry fixed effects, and the m
odels in colum

ns (4) and (8) also include industry × year fixed effects.  Standard errors are clustered at the 2 
digit SIC

 industry-county level.  M
odels in colum

ns (1) to (4) has 26,607 2-digit SIC
 industry × county × year observations, 20 2 digit SIC

 industry, and 791 county observations and m
odels in colum

ns (5) to (8) has 13,301 2 digit SIC
 industry × county × year 

observations, 20 2 digit SIC
 industry, and 244 county observations. 
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 TA

B
LE 6: Space Places and Patent Inventor M

igration 

D
ependent V

ariable = 
Log(O

ut M
igration Ratio) 

 
(1) 

(2) 
(3) 

 
 

 
 

Space Score D
ifference

od,<1958 × Space Race
t 

0.09 
(0.05) 

0.10 
(0.05) 

0.17 
(0.05) 

Space Score D
ifference

od,<1958 × Post-Space Race
t  

0.27 
(0.07) 

0.28 
(0.07) 

0.31 
(0.08) 

Corporate Incom
e Tax Rate (1-CIT)odt  

 
0.37 

(0.23) 
 

Personal A
verage Incom

e Tax Rate, 90
th percentile (1-A

TR)odt  
 

0.92 
(0.18) 

 

R&
D

 Credit (1+credit)odt 
  

 
0.00 

(0.02) 
 

O
rigin County Fixed Effects 

Y
 

Y
 

Y
 

D
estination County Fixed Effects 

Y
 

Y
 

Y
 

Y
ear Fixed Effects 

Y
 

Y
 

Y
 

O
rigin Pre-1958 Patents × Y

ear Fixed Effects 
Y

 
Y

 
Y

 
D

estination Pre-1958 Patents × Y
ear Fixed Effects 

Y
 

Y
 

Y
 

O
rigin County × D

estination County Fixed Effects 
Y

 
Y

 
Y

 
O

rigin State × Y
ear Fixed Effects 

 
 

Y
 

D
estination State × Y

ear Fixed Effects 
 

 
Y

 
R

2 
0.89 

0.89 
0.91 

Source: D
ata are draw

n from
 N

ational Intelligence E
stim

ate, U
nited States Patent and T

radem
ark and A

kcigit, G
rigsby, N

icholas, and Stantcheva (2022) data from
 1947 to 1992, as described in the data appendix.  E

ach colum
n in the table reports the results from

 
estim

ating one version of equation (4) in the text.  Space Score D
ifferenceij,<1958=L

og(Space Scored)-L
og(Space Scoreo) is the difference in space scores betw

een the origin and destination counties, as described in the text and appendix.  Space R
ace years are 1963, 1967 

and 1972.  Post Space R
ace years are 1977, 1982, 1987, and 1992.  T

he unit of observation is origin county × destination county × application year.  T
he m

odels in all colum
ns includes county, year fixed effects, the count of pre-1958 patents in a county × year fixed 

effects, state × year fixed effects, and include industry fixed effects.  The m
odel in colum

n (3) also includes origin state × year fixed effects and destination state × year fixed effects Standard errors in parentheses, w
ith three-w

ay clustering by origin county
×

year, destination county
×

year, and county-pair.  All m
odels have 57,551 origin-county × destination-county × application year observations and 480 county observations. 

 
 



37 
 TA

B
LE 7: Space Places, V

alue A
dded and Em

ploym
ent: Local V

ersus M
arket Effects 

D
ependent V

ariable = 
Log(V

alue A
dded) 

Log(Em
ploym

ent) 
 

(1) 
(2) 

(3) 
(4) 

(5) 
(6) 

 
 

 
 

 
 

 
Space Place

i,<1958  × Space Race
t 

0.06 
(0.03) 

 
0.06 

(0.03) 
0.06 

(0.03) 
 

0.06 
(0.03) 

Space Place
i,<1958  × Post-Space Race

t 

 
0.14 

(0.04) 
 

0.14 
(0.04) 

0.13 
(0.04) 

 
0.13 

(0.04) 
H

igh Space M
arketi,<1958  × Space Race

t 

 

 
0.13 

(0.04) 
0.13 

(0.04) 
 

0.10 
(0.03) 

0.10 
(0.03) 

H
igh Space M

arketi,<1958  × Post-Space Race
t 

  

 
0.03 

(0.07) 
0.03 

(0.07) 
 

-0.02 
(0.06) 

-0.03 
(0.06) 

County Fixed Effects 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

ear Fixed Effects 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Pre-1958 Patents × Y

ear Fixed Effects 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
State × Y

ear Fixed Effects 
Y

 
Y

 
Y

 
Y

 
Y

 
Y

 
Industry Fixed Effects  

Y
 

Y
 

Y
 

Y
 

Y
 

Y
 

Industry × Y
ear Fixed Effects 

 
 

 
 

 
 

R
2 

0.50 
0.50 

0.50 
0.46 

0.46 
0.46 

N
otes: D

ata are draw
n from

 N
ational Intelligence E

stim
ate, C

ensus of M
anufacturers, U

nited States Patent and T
radem

ark, and Jaw
orski and K

itchens (2019) data from
 1947 to 1992, as described in the data appendix.  E

ach colum
n in the table reports the results from

 
estim

ating one version of equation (5) in the text.  Space Placei,<1958 is an indicator variable reflecting a county’s being above m
edian in term

s of the sim
ilarity betw

een the technologies in pre-1958 patents and the N
ational Intelligence E

stim
ates of Soviet Space 

C
apabilities betw

een 1958 and 1992 (the Space Score), as described in the text and appendix.  H
igh Space M

arketi,<1958 takes a value of one in counties w
ith above m

edian space spending in their m
arket during the era indicated, as described in section 1.2 of the online 

appendix.   Space R
ace years are 1963, 1967 and 1972.  Post-Space R

ace years are 1977, 1982, 1987, and 1992.  T
he unit of observation is 2 digit-SIC

 industry × county × year.  T
he m

odels in all colum
ns includes county, year fixed effects, the count of pre-1958 patents 

in a county × year fixed effects, state × year fixed effects, and include industry fixed effects.  Standard errors are clustered at the 2 digit SIC
 industry - state level.  A

ll m
odels have 26,862 2 digit SIC

 industry × county × year observations, 20 2 digit SIC
 industry, and 

791 county observations.   
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Figure 1: NASA Spending and Patenting, 1947-1992 

Panel A: NASA Spending 
 

 
 

Panel B: Patenting 
 

 
Notes: Data are drawn from United States Patent and Trademark Office, and Flemming et al. (2019) and NASA Historical Data Books.  Reported NASA spending in fiscal year 1963 include 
both 1963 and earlier years.  NASA Spending is measured in 1958$.  NASA patents include patents assigned to or funded by NASA. 

 

 

 

 

Figure 2: State NASA Spending, and Changes in Value Added and Employment, 1958-1992 

Panel A: Value Added 
 

 

Panel B: Employment 
 

 
 

Notes: Data are drawn from the Census of Manufacturers and NASA Historical Data Books.  See the data appendix for details. 
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Figure 3: Patents Highly Similar to National Intelligence Soviet Space Capabilities Estimates 

  

  
Source: Authors’ calculations using National Intelligence Soviet Space Capabilities Estimate data from 1958 to 1992 and United States Patent and Trademark data from 1945 to 1958.  Each 
panel list the patents with technologies most similar to the indicated NIE document.  

Map 1: Map of Space Scores 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors’ calculations using National Intelligence Estimate data from 1958 to 1992 and United States Patent and Trademark data from 1945 to 1958.  The space score is the !!"" as 
discussed in section 2.2 of the appendix.  
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Figure 5: Value Added and Employment Effect Dynamics 

Panel A: Log (Value Added) 
 

 
Panel B: Log(Employment) 

 
Notes: Source: Authors’ Calculation from National Intelligence Estimate, Manufacturing Census Data, and United States Patent and Trademark data from 1947 to 1992, as described in the data 
appendix.  Each panel in the table displays the results from estimating one version of equation (4) in the text for the outcome indicated.  High Space Intel Techi,<1958 is an indicator variable 
reflecting a county being above median in terms of the similarity between the technologies in pre-1958 patents and the National Intelligence Estimates of Soviet Space Capabilities between 1958 
and 1992, as described in the text.  The points plot the year by year coefficient estimates on for High Space Intel Techi,<1958 with the 95% confidence intervals indicated by the range with 1958 is 
the omitted year, as indicates in the equation (4) in the text.  Space race years are 1963, 1967 and 1972.  Post space race years are 1977, 1982, 1987, and 1992.  The unit of observation is 2 digit 
SIC industry × county × year.  The models in all columns includes county, year fixed effects, the count of pre-1958 patents in a county × year fixed effects, state × year fixed effects, and include 
industry fixed effects.  Standard errors are clustered at the 2 digit SIC industry × county level.  
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1 Variable Definitions and Sources

1.1 Manufacturing

Value Added: Total di↵erence between value of shipments and expenditure on materials

in the county-industry-year unit, 1958 $.

Employment: Total employment in the county-industry-year unit.

Labor Income: Average annual labor income in the county-industry-year unit, 1958 $.

Non-Production Worker Share: Ratio of non-production to production workers in the

county-industry-year unit.

Capital Investment: Total investment in by manufacturing firms in the county-industry-

year unit, 1958 $.

Capital: Measured by the capital stock in the industry-county-year unit. We construct

our capital stock measure from the reported investment series using the perpetual inventory

method. We follow Bloom, Shankerman, and Van Reenen (2013) and choose the baseline

value of the capital stock in 1958: kij1958 = iij19580.08 + gkij1958, where gkij1958 is the growth

rate of investment between 1954 and 1958 in the county-industry cell. We follow Bloom,

Bond and Van Reenen (2007) in assuming a 8% depreciation rate. Our capital stock measure

in years other than 1958 is given by kijt = iijt+(1�0.08)2.5kijt�1. We assume that investment

occurs at the mid-point between the five year di↵erences in manufacturing census years. If

investment is missing we assume it is zero, and depreciate the prior capital. If the lagged

capital stock is missing, use the SIC2 capital-employment ratio and observed employment

in the industry-county cell to impute lagged capital stock. Measured in nominal dollars.

TFPR, Solow: Estimated total factor revenue productivity using a Cobb-Douglas value

added production function with capital and labor as inputs, nominal $. We estimate the pro-

duction function Yijt = AijtK
�1j

ijt L
�2j

ijt allowing factor shares to be industry specific to recover

manufacturing revenue productivity at the industry-county-year level, Aijt. We estimated

this using OLS and consider other estimation methods below.

Unit of measurement for all variables: County ⇥ SIC 2 digit ⇥ year.
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Sources for all manufacturing variables: U.S. Census Bureau, Census of Manufactures (var-

ious years).

1.2 Space Places

Space Score: The county median cosign similarity between full-text pre-1958 patent texts

and post-1958 CIA National Intelligence Estimates of Soviet Space Capabilities texts. The

space score (⇢̃Ci) is the median value of ⇢̃p<1958 across all pre-1958 patents in county i, as

describe in appendix section 2.2. This variable is defined at the county level.

Space Place: “Space Places” are counties with above median values of the space score

variable, as describe in appendix section 2.2. This indicator variable is defined at the county

level.

High Own-Industry Space Score: High Own-Industry Space are county-industries with

above median values of the own-industry space score variable. The calculation is similar to

that described in appendix section 2.2, however, ⇢̃Cij is computed for each industry(j)-county

(i) cell rather than county cell. This indicator variable is defined at the county-industry level.

High Other-Industry Space Score: High Other-Industry Space are county-industries

with above median values of the other-industry space score variable. Own industry patents

are excluded from this calculation. The calculation is similar to that described in appendix

section 2.2, however, ⇢̃Ci�j is computed for each set of other industries(�j)-county (i) cell

rather than county cell. This indicator variable is defined at the county-industry level.

High Space Market: High Space Market are counties above median in terms of our space

market measure SpaceMarketo ⇡
P

d ⌧
�✓d
od SpaceSpending✓d, and zero otherwise. ✓ = 6.74.

See appendix section 3 for the derivation and discussion of this measure. This indicator

variable is defined at the county-era level.

Space Place, Unstemmed: Space places are counties with above median values of the

space score variable, as describe in appendix section 2.2. We compute the space score as

the median of ⇢̃nostemp<1958,i for each county i using all the patents in the county, as describe in

appendix section 2.2. This version calculates the cosign similarity using unstemmed versions

of the science direct terms (⇢̃nostemp<1958,i). This indicator variable is defined at the county level.
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Space Place, All: Space places are counties with above median values of the space score

variable, as describe in appendix section 2.2. We compute the space score as the median of

⇢̃
all
p<1958,i for each county i using all the patents in the county, as describe in appendix section

2.2. This version uses the full of NIE documents that cover space technology to compute the

median as indicated in appendix Table A1 column ‘All’. This indicator variable is defined

at the county level.

Space Place, Mean: Space places are counties with above median values of the space score

variable, as describe in appendix section 2.2. We compute the space score as the mean of

⇢̃p<1958,i for each county i using all the patents in the county, as describe in appendix section

2.2. This indicator variable is defined at the county level.

Space Place, Exclusive: Space places are counties with above median values of the space

score variable, as describe in appendix section 2.2. We compute the space score as the

median of ⇢̃exclusivep<1958,i for each county i using all the patents in the county, as describe in

appendix section 2.2. This version only uses the subset of NIE documents that cover space

technology exclusively to compute the median as indicated in appendix Table A1 column

‘Exclusive’. This indicator variable is defined at the county level.

All space place variables are derived from the authors’ calculations using the full text of

patent documents, the full text of CIA National Intelligence Estimates of Soviet Space Ca-

pabilities, and the Science Direct Technology Corpus of terms. More details on the creation

of the variables is provided in appendix section 2.2 below.

1.3 Patents

Total Patents: Total patents in a year at county-year unit level. Patents with authors

from more than one county are assigned fractionally to multiple counties based on county

authorship share.

Pre-1958 Patents: Total patents between 1947 and 1958 at the county-year unit.

NASA Patents: Total NASA patents in the county-year unit. NASA patents are those in

which NASA is either the assignee or listed as a funder on the patent. Patents with authors

from more than one county are assigned fractionally to multiple counties based on county

authorship share.
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Army Patents: Total Army patents in the county-year unit. Army patents are those in

which the Army is either the assignee or listed as a funder on the patent. Patents with

authors from more than one county are assigned fractionally to multiple counties based on

county authorship share.

Navy Patents: Total Navy patents in the county-year unit. Navy patents are those in

which the Navy is either the assignee or listed as a funder on the patent. Patents with

authors from more than one county are assigned fractionally to multiple counties based on

county authorship share.

Non-NASA Patents: Total Non-NASA patents in the county-year unit. These patents

include those for which NASA is neither an assignee nor listed as a funder on the patent.

Patents with authors from more than one county are assigned fractionally to multiple counties

based on county authorship share.

Unit of measurement for all variables (unless stated otherwise): County ⇥ SIC 2 digit ⇥
year.

Sources for all patent variables: Marco, Carley, Jackson and Myers (2015); Lybbert and Zolas

(2014); USPTO (2013); Petralia, Balland, and Rigby (2016); Fleming, Greene, Li, Marx, and

Yao (2019); USPTO (2020); and authors’ calculations. Information on assignment or funding

of patents is drawn from Fleming, Greene, Li, Marx, and Yao (2019) for patents before 1976

and from USPTO PatentsView for those 1976 and after.

1.4 Population

Population: Total population in the county-year unit.

High School Graduate Percentage: Percentage of adults age 25+ who are high school

graduates in the county-year unit. In other words, the high school diploma is the terminal

degree.

Unit of measurement for all variables: County ⇥ year.

Source for all variables: Haines (2010).
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1.5 NASA and Military Spending

NASA Spending (1958$): The sum of contractor and NASA R&D center spending in a

county since the prior manufacturing census year. NASA contractor spending is obtained

from summing up the amount spent by the top 100 NASA contractors from 1963 to 1992 in

a county in 1958 dollars. Locations of contractor activity, not corporate headquarters, are

utilized. The top 100 contractors account for the vast majority of NASA prime contractor

spending. The maximum share of NASA contractor spending occurring at the top 100 is

92.86% and the minimum share is 87.17%. Because NASA R&D center spending includes

contractor spending we multiply each NASA center’s reported spending by the fraction of

NASA spending that was not contracted out. This fraction is 25%. NASA contractor data

drawn from Van Nimmen and Bruno (1976, 191-208) and Gawdiak (1994, 184-99). NASA

R&D data is from Rumerman (1999) and Rumerman (2012).

Military Spending: Total military contract spending in the county-year unit. The 1947-

1966 data are based on state-level data, but allocated using 1967 SIC2-county weights applied

to each location and industry. The 1967 to 1992 data are based on totals on individual

contracts over $10,000 at the SIC2-county level. The earliest year for the state data is 1951.

The data we use for 1947 is based on reported values in 1951. The post-1967 contract data

only have industry in a few years. We use the federal supply codes for equipment cross-

walked to SIC2 industries to get the industry level data. Unit of measurement: County

⇥ SIC 2 digit ⇥ year. Sources: USDOD(1975); USDOD(1981); USDOD(2007); authors’

calculations.

1.6 Patent Inventor Migration

County In-Migration of Patent Inventors: We denote origin locations o and destination

locations d. The number of inventors who move from o to d is Podt and the number of

inventors who begin in o and do not move, Poot, so that log
⇣

Podt
Poot

⌘
is the log odds ratio

for inventor migration. This variable is measured at the origin-destination county pair level

for the 1945 to 1992 patent application years. Source: Authors’ calculation using patent

inventor panel data as described in section 2.3 of the appendix.

Corporate Income Tax Rate: The additional tax burden accruing to a firm in the top

tax bracket in state s for an additional one dollar of revenue if all of its operations were in s.
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Measured at the state-year level. Source: Akcigit, Grigsby, Nicholas, and Stantcheva (2022).

Personal Average Income Tax Rate, 90th Percentile: The total tax burden for an

individual at the 90th percentile of the national income distribution divided by that individ-

ual’s total income. Calculated using the tax calculator by Bakija (2006). Measured at the

state-year level. Source: Akcigit, Grigsby, Nicholas, and Stantcheva (2022).

R&D Credit: Statutory credit rate adjusted for recapture and type of credit for a given

state-year. Source: Akcigit, Grigsby, Nicholas, and Stantcheva (2022)

1.7 Transportation Costs and Other Variables

Transportation Costs (⌧ij): County-to-county transportation costs in 1960. This measure

is based on the 1959 Rand McNally Road Atlas highway network to compute the travel costs

between all county pairs in the contiguous United States in each year. Transportation costs

are computed by measuring the road surface, using historical sources for travel speed by

road surface type and legislated speeds. Monetary travel costs are obtained by using the per

mile wage of a truck driver multiplied by the travel time plus the per mile fuel cost times the

distance. See Jaworski and Kitchens (2019) for more details. Unit of measurement: County.

Sources: Jaworski and Kitchens (2019); authors’ calculations.

Defense Scientist (1962): Number of research scientists who have received funding from

a defense agency before 1962 in the county. Source: National Register of Scientific and

Technical Personnel (NSF, 1962).

Research Scientist (1962): Number of research scientists in 1962 in the county. Source:

National Register of Scientific and Technical Personnel (NSF, 1962).

IBM Mainframe Computers (1961): Number of IBM mainframes installed before 1961.

Unit of measurement: County. Source: IBM (1962).
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2 Data Construction

2.1 Manufacturing Census Panel

We obtain data from the Censuses of Manufactures of 1947, 1954, 1958, 1963, 1967, 1972,

1977, 1982, 1987, and 1992. These census data provide reporting at the county and MSA

levels. We standardize the reporting to measure consistent quantities and monetary val-

ues across data years for SIC 2-digit industries. Some large metro counties do not report

separately from the MSA in 1963, 1967, 1972, and 1977. We apportion these MSA values

to counties using the share of employment in an industry-county cell in a MSA-industry

cell. We take the average of this apportionment factor in 1958 and 1982 to apportion the

1963-1977 MSA-industry data to county-industry cells.

We drop observations that report: (1) missing value added or employment in a year; (2)

the reported number of total workers (i.e., production plus non-production) was less than the

number of reported production workers in a given year; (3) less than three times during the

sample; and (4) no pre-1958 patents. These restrictions lead to a loss of 2,597 observations.

We further drop 30 observations that are state singletons (from SD, ND, and WY) so that we

utilize the same sample throughout our analysis when we include state ⇥ year fixed e↵ects

in our models. Our main analysis sample contains 26,862 county-industry observations from

791 counties and 20 two-digit SIC industries from 1947 to 1992.

2.2 Space Places: Patent and Soviet Space Intelligence Text

Corpus of Technology Concepts: To compute the similarity between full-text USPTO

patent documents and CIA National Intelligence Estimates of Soviet Space Capabilities

documents we employ three sources. First, we obtain the Science Direct (SD) corpus of

Technology Terms.1 The SD corpus of technology concepts consists of 193,715 expressions

comprising Science Direct (SD) Topics. Similar to the well-known Medical Subject Headings

(MeSH) terms, the vocabulary in the SD Topics indexes articles in SD in order to improve

information retrieval for researchers. Unlike the medical focus of MeSH terms, the SD Topics

cover all scientific disciplines represented in SD.

Full Patent Text: Two sources are used for extracting full patent texts for the time period

1
The list is available here: https://www.sciencedirect.com/topics/index.
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from January 1940 to December 1991, inclusive. Full patent text since 1976 is available in

the US Patent and Trademark O�ce’s Patent Full-Text and Image Database (PatFT)2. For

the time period of 1940-1975, description and claims text was extracted using the Google

Patents Public Datasets on BigQuery.3

National Intelligence Estimates (NIEs): The CIA’s now-declassified NIEs are authori-

tative intelligence assessments related to the Soviet Union’s capabilities with regard to space

flight, among a number of other geopolitically sensitive areas.4 During the period of 1946-

1991, these documents provide estimates of Soviet scientific and technical capabilities in

space. Some of the documents also focus on military technology. We exclude the documents

that primarily focus on military technology from our baseline analysis. We compute an ad-

ditional patent text similarity measure using only documents with an exclusive space focus

as a robustness exercise. The documents we use are listed in appendix Table A1.

Data Pre-Processing: English stop words were removed, and Porter stemming was applied

to the SD Topics corpus, as well as to the full patent and NIE texts.5 To reduce the dimension

of the SD Topics, we then dropped stemmed topics appearing less than 1,000 times over the

full set of patent texts, and then dropped the top 1% most frequently occurring terms. The

most frequently occurring terms that were dropped include “Copper,” “Dye,” “Gridding,”

and “Duct,” for example. SD Topics containing more than four words are also dropped.

The combination of stop word removal, stemming, dropping infrequent and too frequent

terms, and dropping Topics comprising more than four words result in a dictionary of 25,767

technology concepts.

Text Similarity: We first compute the text similarity between each patent and each NIE

document in appendix table A1 using a cosine similarity measure. This process is imple-

mented by following the steps:

2
Available at https://bulkdata.uspto.gov/. Search for links under Patent Grant Full Text Data (No

Images) (JAN 1976 - PRESENT).

3
Available at https://cloud.google.com/blog/topics/public-datasets/google-patents-public-datasets-

connecting-public-paid-and-private-patent-data. Follow directions to Google Patents Public Data. Data set

ID: “patents-public-data:patents”.

4
Documents were sourced from http://www.astronautix.com/r/russiawhatddidtheyknowit.html. More

information regarding these records is available at https://www.cia.gov/readingroom/collection/declassified-

national-intelligence-estimates-soviet-union-and-international-communism.

5
Both the English stop words removal and the Porter2 stemming were achieved using the SnowballStem-

mer function from the Natural Language Toolkit (NLTK) Python module.
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1. Construct a document term matrix containing frequency counts for each SD Topic in this

representative NIE document (after data cleaning);

2. Construct document term matrices for each U.S. patent (after data cleaning);

3. For each patent document term matrix, compute the cosine similarity against the repre-

sentative NIE:

⇢p<1958,n>1958 =

Pn
i=1 TFi,n>1958TFi,p<1958qPn

i=1 TF
2
i,n>1958

qPn
i=1 TF

2
i,p<1958

(A1)

where ⇢p<1958,n>1958 is cosine similarity between a patent document issued before 1958 (p <

1958) and an NIE document issued after 1958 (n > 1958). TFi,n>1958 is the term frequency

for SD term i in NIE document n > 1958, and TFi,p<1958 is the term frequency for SD term

i in patent document p < 1958. Exhibit 3 in the online appendix provides a visual example

of highly similar pages in an NIE document and patent document captured by this approach

with the SD technology terms highlighted.

Space Places: We aggregate patent level NIE similarities to the county level to determine

space places. We first compute median of ⇢p<1958,n>1958 at the patent level across all NIE

documents after 1958 to obtain ⇢̃p<1958. The space score (⇢̃Ci) is the median value of ⇢̃p<1958

across all pre-1958 patents in county i. Counties with high values of ⇢̃Ci (high space place

score) have pre-Sputnik technologies represented in the county, as evidenced through their

patent records, similar to the space technologies that the Sovets possessed after 1958. Coun-

ties with low values of ⇢̃Ci (low space place score) had pre-Sputnik technologies within the

county that were not similar to later Soviet space technologies. Our space place variable

takes a value of 1 for counties with above median values of ⇢̃Ci , and a value of zero otherwise.

2.3 Patent Inventor Panel

We build a panel of inventors by disambiguating the inventors listed on all USPTO patents

from 1947 to 1992. We follow the disambiguation procedure of Li et al. (2014) to determine

if a pair of patent-inventor records belongs to a single individual. This task is a clustering

problem which is addressed using an Authority machine learning approach (see Torvik and

Smalheiser 2009). Given a training data set of disambiguated inventors, we cluster inven-

tors in our historical patent data based on a similarity profile. Following Akcigit, Grigsby,

Nicholas and Stantcheva (2018), we measure similarity across a pair of inventors using com-

binations of inventor-level features – inventor name and location – and patent-level features
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– patent assignee, technology class, and coauthor network. Intuitively, the algorithm as-

signs a higher probability of two patent-inventor records belonging to the same individual

when the two patents are technologically similar, or share the same assignees, trace back to

geographically close locations, etc.

The ideal implementation of the disambiguation algorithm considers the similarity across

all pairs of inventors in the historical patent records available through Google Patents (GP).

With over 3.8 million patent-inventor records during our period of analysis (1920-1980),

this translates to over 14.4 trillion inventor pairs. To reduce the computational burden of

the ideal implementation, we adopt the iterative blocking approach from Akcigit, Grigsby,

Nicholas and Stantcheva (2018). The starting point is to compare only record pairs within a

block of inventors sharing an exact first and last name. Later iterations allow for increasingly

larger blocks by comparing, for example, inventors with a same first initial and exact last

name. The purpose of the iterative blocking approach is to (1) reduce the computational

cost of the algorithm, and (2) allow for di↵erent feature sets when constructing the similarity

of a pair of patent-inventors. The exact implementation of our disambiguation algorithm is

described below.

2.3.1 Feature set and similarity profiles

Feature set. We compare two records by constructing pairwise similarity profiles x using

a set of features x1, ..., xk. Each available feature xi is encoded as follows.

• Middle name: middle names (and first and last names as well) are constructed from

the inventor full name field. Once constructed, we compare the middle name feature

for a pair of records and assign one of of the following alternatives.

(a) The middle names match exactly (e.g. “JAMES” and “JAMES”);

(b) One record has a full middle name (with length greater than a single letter). The

other record has only a middle initial which matches the initial of the other record

(e.g. “JAMES” and “J”);

(c) Both records have missing middle name;

(d) One of the two records have a missing middle name (e.g. “JAMES” and “ ”);

(e) Otherwise (e.g. “JAMES” and “EDWARD”).
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• Location: we geolocate patent-inventors by linking patent numbers and inventor names

with latitude and longitude information available at the Comprehensive Universe of

U.S. Patents data. 6 Once each patent-inventor record is geolocated, we measure

geodesic distance for a pair of records and assign one of the following alternatives:

(a) The two inventors are located less than 1 mile apart;

(b) The two inventors are located from 1 to under 10 miles apart;

(c) The two inventors are located from 10 to under 25 miles apart;

(d) The two inventors are located from 25 to under 50 miles apart;

(e) Either the two inventors are located 50 or more miles apart, or at least one record

has a missing location).

• Patent technology classes: this feature uses the first reported U.S. Patent Class (USPC)

code of a patent record. Comparison across a pair of records yields the following

assignment:

(a) The USPC codes are identical;

(b) The USPC codes are not identical.

• Assignee: the assignee feature is constructed from the harmonized assignee field in the

Google Patents Big Query data base. We retain only the first assignee listed in the

patent record. Comparison of a pair of records yields the following assignment:

(a) The two patent records yield a Jaro-Winkler (JW)-based similarity metric of at

least 0.9;

(b) 0.8  JW < 0.9;

(c) 0.7  JW < 0.8;

(d) One of the two patent records have a missing assignee;

(e) Otherwise.

• Coauthor network: we construct the coauthor network feature by assigning, to each

patent, a list of all the patent’s inventors. The list is alphabetically sorted, and uses

each inventor’s first and last name. We compare coauthor networks between two

patent-inventor records and assign:

6
The data set was compiled by Enrico Berkes. Data inquiries should be directed to enrico.berkes@

gmail.com.
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(a) The patent coauthors list is identical between the pair of records;

(b) Otherwise.

Similarity profile. We construct pairwise similarity profiles using the features above. For

example, in an iteration where similarity is defined using the middle name and location fea-

tures, the similarity profile for two records with middle names “JAMES” and “J” geolocated

within a mile from one another is the vector x =< b, a >.

Treating the disambiguated inventor data from Li at al. (2014) as a “ground truth”

training set, we compute the probability that each profile x belongs to the same inventor.

We construct this probability from the count of records with profile X that belong to the

same inventor versus the count that belong to di↵erent inventors. Let M denote the event

that a patent-inventor pair is a match (i.e., belong to the same individual) and N the event

that it is a non-match. Using Bayes rule, the probability of a match M given an observed

similarity profile X is:

P (M | x) = P (x | M)P (M)

P (x | M)P (M) + P (x | N)(1� P (M))
. (A2)

The posterior probability P (M | X) has a one-to-one relationship with the posterior odds

of a match, defined as:

P (M | x)
1� P (M | x) =

P (M)

1� P (M)

P (x | M)

P (x | N)
. (A3)

Eq A3 can be converted back to Eq A2, and defining the likelihood ratio r(x) = P (x|M)
P (x|N) , we

get:

P (M | x) = 1

1 + (1�P (M)
P (M) )( 1

r(x))
. (A4)

From Eq A4, two components are needed to determine the posterior probability of a match

given an observed similarity profile: the matching prior and the likelihood ratio. The prior

match probability P (M) at each iteration of the algorithm is the ratio of within-cluster

matched pairs in a block over the total number of pairs in the block. The likelihood ratio

r(x) is determined directly from the training set by taking the ratio of times the similarity

profile x lead to matched events M versus non-matched events N . The training set consists

of disambiguated data from Li at al. (2014)7, which we use to compute posterior match

7
Available at the Harvard Dataverse Network at https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/5F1RRI. Use the compressed file “invpat final.zip”
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probabilities for each similarity profile at each blocking algorithm. This data set contains

over 9 million patent-inventor instances from over 4 million patents issued between 1975-

1999. The underlying assumptions from using this data for our disambiguation task are

that the inventor identifiers are accurately assigned in the training data, and also that there

would be no systematic di↵erences in the posterior match probabilities for patents in our

historical records of 1920-1980 and patents in the training set years of 1975-1999.

2.3.2 Disambiguation blocks

After each iteration, we say that two records originate from the same inventor if the computed

posterior match probability exceeds 0.85. The blocking iterations are described below:

Iteration 1. Block inventors based on exact first and last name. Construct similarity profiles based

on middle name and location.

Iteration 2. Same as Iteration 1.

Iteration 3. Same as Iteration 1.

Iteration 4. Block inventors based on exact first and last name. Construct similarity profiles based

on assignee, patent technology class, coauthor network, and middle name.

Iteration 5. Block inventors based on first five letters of first name and exact last name. Construct

similarity profiles based on assignee, patent technology class, coauthor network, and

middle name.

Iteration 6. Block inventors based on first three letters of first name and exact last name. Construct

similarity profiles based on assignee, patent technology class, coauthor network, and

middle name.

Iteration 7. Block inventors based on initial of first name and exact last name. Construct similarity

profiles based on assignee, patent technology class, coauthor network, and middle name.

Iteration 8. Block inventors based on initial of first name and exact last name. Construct similarity

profiles based on middle name and location.
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2.3.3 Algorithm performance

For the purposes of measuring algorithm performance and optimizing the cuto↵ parameter

c of the posterior match probability, we subset a random sample 73,562 patent-inventor

instances from 67,443 patent records from the Li et al. (2014) data. We refer to this subset

of the data as the held-out test set. Upon computing the posterior match probabilities

in the training set (while holding out the test set), we ran the disambiguation iterations

described above on this hold-out test data. We varied the cuto↵ parameter c in the set

{0.8, 0.85, 0.9, 0.95, 0.99} and computed splitting (S) and lumping (L) performance statistics,

defined as:

S =

P
i{x | x 2 Ui,x /2 Vi}P

i|Ui|
, (A5)

L =

P
i{x | x 2 Vi,x /2 Ui}P

i|Vi|
. (A6)

In Eqs A5 and A6, Ui denotes the set of patents for inventor i on the ground truth disam-

biguation of the Li at al. (2014) data, while Vi denotes the largest set of patents for inventor

i based on our disambiguation algorithm. The splitting and lumping statistics using the

held-out test set in the searched range are shown below. For our disambiguation of histor-

ical patent records, we chose the cuto↵ c = 0.85 which minimizes the sum of splitting and

lumping in the held-out test set.

2.3.4 Analysis Dataset

Our disambiguation identifies 882,072 U.S. inventors who were jointly granted 2.4 million

patents for our sample period 1945 to 1992. Our main analysis in Table 7 uses a subsample

of inventors in the top 25% of lifetime inventors, who have at least 13 lifetime patents. This

subsample has 25,684 U.S. inventors who were jointly granted 626,705 patents. Our analysis

in Appendix tables in A13 utilizes a subsample consisting of the top 5% of lifetime inventors,

those with at least 51 lifetime patents. This subsample has 1,481 U.S. inventors who were

jointly granted 119,436 patents. Our analysis in Appendix tables in A14 utilizes subsamples

consisting of the top 50% of lifetime inventors. This subsample has 105,458 U.S. inventors

who were jointly granted over 1.1 million patents.
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Splitting and lumping statistics in held-out test set using di↵erent cuto↵s of

the posterior match probability

Cuto↵ .80 .85 .90 .95 .99

Splitting .01504 .02069 .03636 .15756 .43979

Lumping .08360 .07626 .06326 .03212 .01447

Splitting + Lumping .09864 .09696 .09961 .18969 .45426

3 Calculating the Internal Rate of Return

The internal rate of return (IRR) is the interest rate that makes the net present value of

a project zero. This calculation includes both the benefits and costs. In our setting the

benefits are expanded output and the costs are expenditures on Space R&D.

We compute the internal rate of return from the perspective of a 1958 investor in the

project. They take account of the costs and benefits of the space spending in each period

and compute the discount rate required to provide a zero net present value.

The IRR is defined as the solution to this equation,

0 = NPV =
1992X

t=1958

Yimpact,t � Simpact,t

(1 + IRR)t
(A7)

To implement our calculation we use our preferred estimates on the di↵erential NASA

spending in space place counties in the post-space race era in Table 2 column (3) and the

space place di↵erential in the post-space rage output in Table 3 column (3) (or Table 6 column

(3) for the productivity variant). Multiplying NASA spending impact estimates times the

nationwide total of NASA spending in a year gives us an implied nationwide spending impact

in each year (Simpact,t). Similarly, multiplying the output or productivity impact estimates

times the nationwide manufacturing output in 1958 gives us an implied nationwide output

e↵ect in each period (Yimpact,t). We then compute the IRR by setting the net present value

of this stream of annual project benefit (in terms of output or productivity) minus annual

project costs (in terms of NASA spending) equal to zero.
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4 Modelling Nationwide E↵ects of Public R&D

In this section we describe our approach to estimate the e↵ect of public R&D on nationwide

economic outcomes. We use a simple county to county trade model based on Donaldson

and Hornbeck (2016) and for ease of exposition we follow their notation and presentation

closely. We di↵er from their model, however, in that we focus on the impact of public

R&D spending, holding transportation infrastructure fixed and introducing market-level

consumption externalities.

4.1 Set Up

We index counties by o if they are origin of trade and d if they are destinations. Consumers

have CES preferences over a continuum of di↵erentiated product varieties, where the elas-

ticity of substitution across varieties is given by �. Producers in each county combine a

fixed factor land (Lo), and mobile factors labor (No) and capital (Ko) using a Cobb-Douglas

technology to produce varieties. Public R&D reduces unit costs for firms in location o. The

marginal cost of each variety is given by:

MCo(j) =
s
�1
o q

↵
ow

�
or

1�↵��

zo(j)
(A8)

where so captures the unit cost e↵ect of public R&D, qo is the land rental rate, wo is the

wage, r is the interest rate, and zo(j) is the local productivity shifter drawn from a Frechet

distribution with a CDF Fo(z) = e
�Aoz�✓

. Ao captures the local knowledge stock, and ✓

captures the standard deviation of the knowledge stock.

Trade costs between o and d are iceberg: for each unit shipped from o to d, ⌧od � 1 is

the cost to ship. That is, if a variety is produced and sold in the same county the price is

poo(j), while the same variety sold in a di↵erent county has price pod(j) = ⌧odpoo(j).

Production and Prices. By assuming perfect competition, unit costs (including

marginal and trade costs, as well as public R&D e↵ects) are equal, letting consumers buy

from the cheapest origin county. Using the assumption that rc = r, Donaldson and Hornbeck

(2016) note that the price index in destination d is defined by

(Pd)
�✓ = 1

X

o

Ao(s
�1
o q

↵
ow

�
o )

�✓
⌧
�✓
od = CMAd (A9)
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where 1 =
⇥
�
�
✓+1��

✓

�⇤ 1
1�� �✓

r
(1�↵��)✓. The price index in county d will fall with an increase

in public R&D in any origin market, with a weight that is declining in trading costs. Bilateral

trade between counties then implies that location specific public R&D may a↵ect prices in

other markets, where the size of the cross-market e↵ect depends on the cost of trading. The

inverse transformation of the price index reflecting customer access to cheap products is

commonly termed Consumer Market Access and denoted CMAd.

Workers and Amenities. Turning to workers, we assume that they are perfectly mobile

across space as our goal is to understand spatial equilibrium implications. We depart from

Donaldson and Hornbeck (2016), however, by including both consumer market access as

a positive amenity of a location and an exogenous fixed utility level (ū) that is common

across locations. As a result of workers’ endogenous location choice, workers’ utility levels

are equalized across counties in equilibrium and, hence, real wages satisfy:

wo

P0
= ūCMA

✏
o (A10)

We include a consumer city amenity where access to a larger set of varieties (Glaeser, Kolko

and Saiz, 2001) increases utility where the spatial scope for agglomeration amenities is beyond

just a county of residence. For example, a worker in Princeton, NJ obtains amenities not

just from the variety of products available in Princeton, NJ, but also those accessible in New

York City. The strength of the market access amenity is captured by the parameter ✏.

Output. We obtain output in a county by summing up exports to all other locations.

Eaton and Kortum (2002) give the following gravity equation for exports from o to d.

Xod = Ao(s
�1
o q

↵
ow

�
o )

�✓
⌧
�✓
od 1CMA

�1
d Yd (A11)

Total output in county o is the summation of exports to all other counties, so that

Yo =
X

d

Xod = 1Ao(s
�1
o q

↵
ow

�
o )

�✓
X

d

⌧
�✓
od CMA

�1
d Yd (A12)

Multilateral market access for the origin county, termed Firm Market Access, is defined as:

FMAo =
X

d

⌧
�✓
od CMA

�1
d Yd (A13)

Thus, output in county o is given by

Yo = 1Ao(s
�1
o q

↵
ow

�
o )

�✓
FMAo (A14)

59



This expression suggests intuitively that output in increasing in location specific productivity,

Ao, cost reductions from public R&D, so, and firm market access, FMAo. Output is falling

in local factor prices for labor, wo, and land, qo.

Solving the Model. We solve the model for equilibrium output to obtain our estimation

equation. First, we solve for the county labor supply relationship in (A10) in terms of nominal

wages to substitute into equation (A14) and obtain

Yo = 2Aos
✓
oq

�✓↵
o CMA

��✏�✓
✓

o FMAo (A15)

where 2 = 1ū.

Next, we express CMAd in terms of FMAo. We can use equation (A14) to solve for

(1A0s
�1
o q

↵
ow

�
o ) and substitute into (A9) to get:

CMAd =
X

o

⌧
�✓
od FMA

�1
o Yo (A16)

Under symmetric trade costs (i.e., ⌧od = ⌧od), equation (A16) and the definition of FMAo

implies there exists a constant ⇢ such that FMAo = ⇢CMAo.8 We further define MA0 ⌘
FMAo = ⇢CMAo. Substituting for FMAo = MAo and CMA0 =

MAo
⇢ into equation (A15)

and rearranging we obtain,

Yo = 3Aos
✓
oq

�✓↵
o MA

1+ ��✏�✓
✓

o (A17)

where 3 = 2⇢
(✏�✓��).

Market E↵ects of Public R&D. Finally, we express MA0 as a function of sd so

that market e↵ects can incorporate public R&D unit cost shocks. Solving for market access

MAo ⌘ FMAo =
P

d ⌧
�✓
od CMA

�1
d Yd, CMAd =

⇣
MAd
⇢

⌘
, and Yd = 3Ads

✓
dq

�✓↵
d MA

1+ ��✏�✓
✓

d

from equation (A14), we obtain

MAo = 3⇢

X

d

⌧
�✓
od Ads

✓
dqdMA

1+ ��✏�✓
✓

d (A18)

Market access in county o increases in response to a distance-weighted sum of county d’s

productivity (Ad), public R&D (sd), land values (qd), and multilateral market access (MAd).

These supply side fundamentals a↵ect the income level in county d and thus take the place

of county d’s output in Donaldson and Hornbeck (2016)’s market access formulation.

8
See Appendix section 3 for the proof of this proposition. Donaldson and Hornbeck (2016) and Allen and

Arkolakis (2014) make use of a similar relationship.
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Estimation Equation. We can obtain an estimation equation by taking logs of equation

(A15) which leads to:

log(Yo) =  Y + ✓log(s0) +

✓
1 +

� � ✏�✓

✓

◆
log(MAo)� ✓�log(qo) + log(Ao) (A19)

where  Y = log (3) is a constant. The local e↵ect of public R&D cost shocks in the same

county is captured by ✓, the trade elasticity. The local public R&D e↵ect is positive.

The market e↵ect of public R&D cost shocks – that is,
�
1 + ��✏�✓

✓

�
– can be either positive

or negative, depending on two key factors. A first force is that public R&D in location d

increases location d’s income, which, in turn, increases exports of goods from location o,

which results in an increase in output by firms in the origin county. A positive market access

e↵ect is standard in this class of models. A second mitigating force is migration. Public

R&D in locations near d increase amenities that may induce workers in county o to move.

With a su�ciently strong amenity e↵ect the negative e↵ects of migration away from o can

outweigh the positive e↵ects of increasing income in location d so that market-level public

R&D results in a reduction in output. Thus, the sign of the market e↵ect of public R&D is

an empirical question.9

4.2 Empirical Implementation

Our goal is to use an econometric model to estimate the national manufacturing e↵ects of

NASA activity. To do so we add market e↵ects from the spatial model into our baseline

9
We can also derive an expression for employment in county o using equation (10) and WoN0 = Yo� to

obtain

No = 4Aos
✓
oq

�✓↵
o MA

1+✓���✏�✓�✏�
✓

o (A20)

where 4 = 3
�
ū . Taking logs we obtain an estimation equation for employment as,

log(No) =  + ✓log(so) +

✓
1 + ✓ � � � ✏�✓ � ✏�

✓

◆
log(

X

d

⌧�✓
od s✓d)� ✓�log(qo) + log(Ao) (A21)

where  Y = log (4) is a constant. Again, local public R&D has a positive e↵ect on employment. Market

level public R&D has an ambiguous e↵ect on employment depending on the parameter values.
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econometric model using using specification,

log(Yijt) =�1 + �2Space Placei,<1958 ⇥ Space Racet + �3Space Placei,<1958 ⇥ post-Space Racet+

�4High Space Marketi,<1958 ⇥ Space Racet + �5High Space Marketi,<1958 ⇥ Post-Space Racet

+ �i + �t +Total Pre-1958 Patentsi ⇥ �t + Si ⇥ �t + ⌫ijt.

(A22)

Here the outcome variables are the log of a manufacturing outcome in county i, industry j

and year t, such as value added or employment. Again, we expect �2 and �3 to be positive

as places that were specialized in Space Race-relevant technologies before it began in 1958

were likely to experience more NASA activity after 1958.

Market e↵ects of public R&D are captured by �4 and �5. Market e↵ects may be positive

implying national e↵ects would be larger than local e↵ects due to strong cross-county demand

or productivity e↵ects. Alternative, market e↵ects may be negative implying national e↵ects

are smaller than local e↵ects due to strong cross-county migration e↵ects. The sign and

magnitude of market e↵ects are an empirical question.

Our empirical implementation in (A22) di↵ers from our model-derived estimation equa-

tions in (A19) for a number of reasons. First, our market access measures build on our

research design using the same source of variation as our main analysis. We follow Donald-

son and Hornbeck (2016) in applying further assumptions to make our market access term

empirically tractable.

First, we assume that our space score measure indexes the unit cost e↵ect of space R&D

in our model (sd) and that we can approximate space-driven market access in equation (A19)

in county o with

SpaceMarketo ⇡
X

d 6=o

⌧
�✓
od SpaceScore✓d (A23)

Our approximation for space market access for county o in era e focuses on a distance-

weighted average of space scores across destination locations. It allows us to obtain a market

access measure when land value (qd) and productivity (Ad) are not reported in manufacturing

census years. It does not include di↵erences across regions in terms of multilateral e↵ects

(MAd since we treat the market access from county d as part of the constant term). It does

not include income in county d unlike Donaldson and Hornbeck (2016) because our supply

side fundamentals take the place of income in our formulation.

We do not include origin county space scores in the market activity measure to separately
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identify only market-level e↵ects. All variation in market activity comes from shocks in space

scores elsewhere that are likely exogenous to county-level outcomes. For this reason we do

not seek instruments for space market activity.

Second, construction of our market-level activity measure, SpaceMarketi, requires ✓

values. We use ✓ = 8.28, the preferred estimate from the meta analysis in Head and Meyer

(2014).

Lastly, we retain the median contrast in our main specification for estimation of market

e↵ects. The variable HighSpaceMarketi takes a value of 1 for counties with above median

SpaceMarketi and zero otherwise.

4.3 Proof ⇢ is Constant

Define key equations

FMAo =
X

d

⌧
�✓
od CMA

�1
d Yd (A24)

CMAd =
X

o

⌧
�✓
od FMA

�1
o Yo (A25)

and

FMAo =
X

d

⌧
�✓
od (FMAd)

�1
Yd (A26)

and

FMAo = ⇢oCMAo (A27)

Step 1: Rearrange (A27) for CMA0, change index from o to be d to substitute into (A24)

for CMAd so that:

FMAo =
X

d

⌧
�✓
od

✓
FMAd

⇢d

◆�1

Yd (A25)

and

FMAo =
X

d

⇢d⌧
�✓
od (FMAd)

�1
Yd (A26)

Step 2: Substitute in for CMAd into (A25) so that:

FMAd

⇢d
=

X

o

⌧
�✓
od FMA

�1
o Yo (A27)
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then

FMAd = ⇢d

X

o

⌧
�✓
od FMA

�1
o Yo (A28)

Changing indexes we get

FMAo = ⇢o

X

d

⌧
�✓
od FMA

�1
d Yd (A29)

Noting that (A26) and (A29) are both expressions for FMAo, we can see that only ⇢o =

⇢d = ⇢ can be a solution to this system of equations.
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Exhibit A1: NASA Space Race Patent Examples 

A. Space Capsule 
 

 
 

B. Navigation and Guidance System 
 

 

C. High Altitude Sensor 
 

 

D. Moon Landing Pad Apparatus 
 

 
Source: USPTO Patents.  
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Exhibit A2: NASA Spinoff Examples 

A. Gas Analyzer: 
 
1983: Mircosensor Technology, California 
 
 
 
 
 
 
 
 
 
 
 
 
Source: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030001721.pdf 
 

B. Magnetic Resonance Imaging (MRI): 
 
1990: University of Michigan, Michigan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020087015.pdf 
 

A. Remote Sensing 
 

1989: NASA, District of Columbia 
 
 
 
 
 
 
 
 
 
 
 
 
Source: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020087609.pdf 

B. Circuit Connectors 
 

1979: Components Corporation, New Jersey 

 
 
Source: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070019747.pdf 
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Exhibit A3: Science Direct Technology Terms and Intelligence-Patents Similarity Examples 

A. Intelligence Document (NIE13, p27) 

  

B. Similar Patent 
(3907225) 
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C. Intelligence Document (NIE16, p15) 
 

 

D. Similar Patent 
(3232560) 
 

 
 
 
Notes: The highlighted words are Science Direct Technology Terms used to compute document similarity.  The 
NIA document displayed in panel A would be considered similar to the patent in panel B.  The NIE document in 
panel C is similar to the patent in panel D.   
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Map A1: NASA Locations, 1947-1992 

A. NASA Spending 

 
B. NASA Patents 

 
Sources:  See the data appendix under NASA spending and NASA patents.  
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Map A2: Military Locations, 1947-1992 

A. Military Contractor Spending 

 
B. Army Patents 

 
C. Navy Patents 

 
Sources:  See the data appendix under military spending and Army and Navy patents.  
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 Figure A

1: Space Place Effects - Leave O
ne State O

ut Estim
ates 

A
. Log(V

alue A
dded) – Space R

ace Era Estim
ates 

 

B
. Log(V

alue A
dded) – Post Space R

ace Era Estim
ates  

 
C

. Log(Em
ploym

ent) – Space R
ace Era Estim

ates 

 

D
. Log(Em

ploym
ent) – Post Space R

ace Era Estim
ates  

N
otes: The estim

ates show
n here graphically follow

 the regression estim
ation (equation (3)) presented in Table 3, colum

n (3) in the m
ain paper.   Each panel in the table displays the coefficient from

 
estim

ating one version of equation (3) in the text, but om
itting one state at a tim

e.  Panels A
 and C

 display coefficients and 95%
 confidence intervals for Space Place

i,<1958  × Space R
ace

t  for value added 
and em

ploym
ent outcom

es, respectively. Panels B
 and D

 display coefficients and 95%
 confidence intervals for Space Place

i,<1958  × Post-Space R
ace

t .for value added and em
ploym

ent, respectively. 
 



74 
 Figure A

2: Space Place Effects - Leave O
ne Industry O

ut Estim
ates 

A
. Log(V

alue A
dded) – Space R

ace Era Estim
ates 

 

B
. Log(V

alue A
dded) – Post Space R

ace Era Estim
ates 

 
C

. Log(Em
ploym

ent) – Space R
ace Era Estim

ates 

 

D
. Log(Em

ploym
ent) – Post Space R

ace Era Estim
ates 

 
N

otes: The estim
ates show

n here graphically follow
 the regression estim

ation (equation (3)) presented in Table 3, colum
n (3) in the m

ain paper.   Each panel in the table displays the coefficient from
 

estim
ating one version of equation (3) in the text, but om

itting one industry at a tim
e.  Panels A

 and C
 display coefficients and 95%

 confidence intervals for Space Place
i,<1958  × Space R

ace
t  for value 

added and em
ploym

ent outcom
es, respectively. Panels B

 and D
 display coefficients and 95%

 confidence intervals for Space Place
i,<1958  × Post-Space R

ace
t .for value added and em

ploym
ent, respectively. 
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 Table A

1: N
ational Intelligence Estim

ate of Soviet Space C
apabilities D

ocum
ents 

D
ocum

ent 
D

ate 
Title 

Baseline; 
Post-1958 

A
ll 

Space 
Exclusive 

N
IE1 

1946-10-31 
Soviet Capabilities For The D

evelopm
ent A

nd Production O
f Certain Types O

f W
eapons 

&
 Equipm

ent 
 

Included 
 

N
IE2 

1950-11-15 
Soviet Capabilities A

nd Intentions 
 

Included 
 

N
IE3 

1951-09-15 
Soviet Capabilities For A

 Surprise A
ttack O

n The Continental U
nited States Before July 

1952 
 

Included 
 

N
IE4 

1953-03-05 
Soviet Capabilities For A

ttack O
n The U

s Through M
id-1955 

 
Included 

 
N

IE5 
1953-06-16 

Soviet Bloc Capabilities Through 1957 
 

Included 
 

N
IE6 

1954-10-05 
Soviet Capabilities A

nd Probable Program
s In The G

uided M
issile Field 

 
Included 

 
N

IE7 
1955-12-20 

Soviet G
uided M

issile Capabilities A
nd Probable Program

s 
 

Included 
 

N
IE8 

1957-03-12 
Soviet Capabilities A

nd Probable Program
s In The G

uided M
issile Field 

 
Included 

 
N

IE9 
1958-08-19 

Soviet Capabilities In G
uided M

issiles A
nd Space V

ehicles 
Included 

Included 
 

N
IE10 

1959-09-08 
Soviet Capabilities In G

uided M
issiles A

nd Space V
ehicles 

Included 
Included 

 
N

IE11 
1959-11-03 

Soviet Capabilities In G
uided M

issiles A
nd Space V

ehicles 
Included 

Included 
 

N
IE12 

1961-04-25 
Soviet Technical Capabilities In G

uided M
issiles A

nd Space V
ehicles 

Included 
Included 

 
N

IE13 
1962-12-05 

The Soviet Space Program
 

Included 
Included 

Included 
N

IE14 
1965-01-27 

The Soviet Space Program
 

Included 
Included 

Included 
N

IE15 
1967-03-02 

The Soviet Space Program
 

Included 
Included 

Included 
N

IE16 
1969-06-19 

The Soviet Space Program
 

Included 
Included 

Included 
N

IE17 
1969-06-23 

Soviet Strategic A
ttack Forces 

Included 
Included 

 
N

IE18 
1970-03-26 

The Soviet Space Program
 

Included 
Included 

Included 
N

IE19 
1971-07-01 

The Soviet Space Program
 

Included 
Included 

Included 
N

IE20 
1973-12-20 

Soviet Space Program
s 

Included 
Included 

Included 
N

IE21 
1974-10-15 

A
 Soviet Land-M

obile ICBM
: Evidence O

f D
evelopm

ent A
nd Considerations A

ffecting 
A

 D
ecision O

n D
eploym

ent 
Included 

Included 
 

N
IE22 

1975-11-15 
Soviet D

ependence on Space System
s 

Included 
Included 

Included 
N

IE23 
1980-08-06 

Soviet M
ilitary Capabilities A

nd Intentions In Space 
Included 

Included 
 

N
IE24 

1982-10-15 
The Technology A

cquisition Efforts O
f The Soviet Intelligence Services 

Included 
Included 

 
N

IE25 
1983-07-15 

The Soviet Space Program
 

Included 
Included 

Included 
N

IE26 
1984-11-15 

Potential For The Transfer O
f Space Technology To The Soviet U

nion 
Included 

Included 
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 N

IE27 
1984-12-15 

Soviet A
pproach To N

uclear W
inter 

Included 
Included 

 
N

IE28 
1985-12-15 

Soviet Space Program
s 

Included 
Included 

Included 
N

IE29 
1986-03-15 

Soviet M
ilitary Production, 1974-85 

Included 
Included 

 
N

IE30 
1987-06-15 

Soviet M
ilitary Production, 1975-86 

Included 
Included 

 
N

IE31 
1988-09-15 

Soviet Reusable Space System
s Program

: Im
plications for Space O

perations in the 1990s 
Included 

Included 
Included 

N
IE32 

1991-08-08 
Soviet Capabilities For Strategic N

uclear Conflict Through the Y
ear 2000 

Included 
Included 

 
N

otes:  See data appendix section 2.2.  This table lists the N
ational Intelligence Estim

ates of Soviet Space C
apabilities that are used in this paper.  O

ur baseline m
easure of space places uses N

IE 
docum

ents #9 to #32 (i.e., those from
 1958 and beyond).  O

ur A
ll-N

IE space place m
easure uses all available relevant N

IE docum
ents #1 to #32.  O

ur space-exclusive-N
IE space place m

easure uses N
IE 

docum
ents indicated in the last colum

n.
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Table A2: 25 Most Frequent Science Direct Technology Topics in NASA Patent Documents 

Unstemmed Term Stemmed Term Topic Rank in 
 NASA Patents 

Topic Rank in  
NIE Documents 

Aircraft aircraft 1 17 
Antennae antenna 2 99 
Nationalism nation 3 14 
Transducer transduc 4 13652.5 
Amplitudes amplitud 5 13652.5 
Spacecraft spacecraft 6 13 
Specimen specimen 7 649.5 
Governance govern 8 70.5 
Modelers model 9 78.5 
Wavelength wavelength 10 832.5 
United States of America unit state of america 11 1246.5 
Instrumentalism instrument 12 53.5 
Propellant propel 13 32.5 
Reflectors reflector 14 1246.5 
Waveform waveform 15 1246.5 
Equator equat 16 399.5 
Provisioning provis 17 155.5 
Satellites satellit 18 3 
Emittance emitt 19 649.5 
Multiplication multipl 20 73.5 
Acceleration acceler 21 399.5 
Ceramer ceram 22 13652.5 
Factorization factor 23 23 
Minimality minim 24 214 
Actualization actual 25 51 

Notes: The first column reports the Science Direct Technology Topic in unstemmed form and the second column reports the stemmed form of the 
Science Direct topic. The third and fourth columns report the ranking of each term with respect to its appearance in NASA patent documents and 
in the CIA National Intelligence Estimates of Soviet Space Capabilities documents, respectively.
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Table A3: 25 Most Frequent Science Direct Technology Topics in National Intelligence 

Estimates of Soviet Space Capabilities Documents 

Unstemmed Term Stemmed Term Topic Rank in  
NASA Patents 

Topic Rank in  
NIE Documents 

Missiles missil 762 1 
USSR ussr 16565 2 
Satellites satellit 18 3 
Estimability estim 138 4 
Orbitals orbit 34 5 
Secretions secret 8846 6 
Intelligibility intellig 1782.5 7 
Defensiveness defens 8115.5 8 
Scientification scientif 947.5 9 
Warhead warhead 18245.5 10 
Directorate director 2392 11 
Payload payload 165.5 12 
Spacecraft spacecraft 6 13 
Nationalism nation 3 14 
Westernization western 6151.5 15 
Germanate german 4295 16 
Aircraft aircraft 1 17 
Mobilization mobil 476 18 
Altitude altitud 198 19 
Space Stations space station 183 20 
Reconnaissance reconnaiss 13452.5 21 
Lates late 1745 22 
Factorization factor 23 23 
Basicity basic 81 24 
Economics econom 493 25 

Notes: The first column reports the Science Direct Technology Topic in unstemmed form and the second column reports the stemmed form of the 
Science Direct topic. The third and fourth columns report the ranking of each term with respect to its appearance in NASA patent documents and 
in the CIA National Intelligence Estimates of Soviet Space Capabilities documents, respectively.
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Table A4: 25 Most Frequent Science Direct Technology Topics Occurring in Top 0.5% of both 

NASA patents and NIE documents 

Unstemmed Term Stemmed Term Topic Rank in  
NASA Patents 

Topic Rank in  
NIE Documents 

Nationalism nation 3 14 
Aircraft aircraft 1 17 
Spacecraft spacecraft 6 13 
Satellites satellit 18 3 
Orbitals orbit 34 5 
Propellant propel 13 32.5 
Factorization factor 23 23 
Instrumentalism instrument 12 53.5 
Actualization actual 25 51 
Governance govern 8 70.5 
Observability observ 40 41.5 
Modelers model 9 78.5 
Multiplication multipl 20 73.5 
Antennae antenna 2 99 
Basicity basic 81 24 
Publicity public 73 46 
Calibrator calibr 52 91 
Identifiability identifi 95 50 
Physicalism physic 61 88.5 
Criticality critic 108 45 
Pastes past 130.5 27 
Simulators simul 54 106.5 
Affectivity affect 127 40 
Interference interfer 128 55.5 
Commercialization commerci 106 97.5 

Notes: The first column reports the Science Direct Technology Topic in unstemmed form and the second column reports the stemmed form of the 
Science Direct topic. The third and fourth columns report the ranking of each term with respect to its appearance in NASA patent documents and 
in the CIA National Intelligence Estimates of Soviet Space Capabilities documents, respectively. The set of terms represented in this table are the 
top 25 terms in the intersection of the top 132 terms from the NASA patents and the top 132 terms in the NIE documents. 
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Table A5: Soviet Space Intelligence Similarity and NASA patents 

Dependent Variable= NASA Patent 
 (1) (2) (3) (4) 
Space Score 0.203 

(0.005) 
0.196 

(0.005) 
0.100 

(0.005) 
0.062 

(0.005) 
Army Patent   -0.089 

(0.007) 
-0.085 
(0.007) 

Navy Patent   -0.089 
(0.008) 

-0.100 
(0.001) 

Government Patent   0.086 
(0.003) 

0.084 
(0.003) 

     
Year Fixed Effect Y Y Y Y 
NBER Technology Subcategory Fixed Effects  Y Y Y 
County Fixed Effects    Y 
R2 0.004 0.005 0.087 0.142 

Notes: Each column in the table reports the results from estimating one version of equation (1) in the text.  The unit of observation is patent level.  
The space score variable measures the cosign similarity between the CIA National Intelligence Estimates of Soviet Space Capabilities texts 
between 1958 and 1992 and the text of the reference patent using the Science Direct technology terms corpus, as described in the text and data 
appendix.  The model in column (1) includes year fixed effects, the model in columns (2) also includes NBER technology subcategory fixed 
effects, the model in column (3) further includes indicator variables for whether the Army, Navy, or other government agency was the owner or 
funder of the patent. Finally, column (4) further adds county fixed effects. All models have 900,822 patent observations. 
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otes: This table is analogous to Table 2 in the m

ain paper, but instead uses a lim
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ple of counties that excludes those locations w
ith m

ore than the 75
th percentile level of pre-1958 patents and less 

than the 25
th percentile of pre-1958 patents. D

ata are draw
n from

 N
ational Intelligence Estim

ates, N
A

SA
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ata B

ook, and U
nited States Patent and Tradem

ark data from
 1947 to 1992, as 

described in the data appendix.  Each colum
n in the table reports the results from

 estim
ating one version of equation (1) in the text.  Space Place

i,<1958 is an indicator variable reflecting a county’s being 
above m

edian in term
s of the sim

ilarity betw
een the technologies present in pre-1958 patents and the N

ational Intelligence Estim
ates of Soviet Space C

apabilities betw
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Score), as described in the text and the appendix.  Space R
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m
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ns (1) and (4) includes county and year fixed effects, the m
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odels in 
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ns (3) and (5) also include state × year fixed effects.  D
ependent variables are transform

ed using the inverse hyperbolic sine:!"#$%ℎ (( )=
ln -(+

√(
!+

1 1. A
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odels have 2,450 county-year 
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N
otes: This table is analogous to Table 3, colum

ns (4) and (8) in the m
ain paper. The exception here is that the m

odels in colum
n (1) and (5) cluster the standard errors by county, the m

odels in colum
ns 

(2) and (6) double cluster the stand errors by county and industry, the m
odels in colum

n (3) and (7) cluster the standard errors by state-industry, and the m
odels in colum

ns (4) and (8) com
pute standard 

errors using a spatial H
A

C
 procedure w

ith a 100km
 cutoff. D

ata are draw
n from

 N
ational Intelligence Estim

ates, C
ensus of M

anufactures, and U
nited States Patent and Tradem

ark data from
 1947 to 

1992, as described in the data appendix.  Each colum
n in the table reports the results from

 estim
ating one version of equation (2) in the text.  Space Place

i,<1958 is an indicator variable reflecting a county’s 
being above m

edian in term
s of the sim

ilarity betw
een the technologies present in its pre-1958 patents and the N

ational Intelligence Estim
ates of Soviet Space C

apabilities betw
een 1958 and 1992, as 

described in the text and appendix.  Space R
ace years are 1963, 1967 and 1972.  Post space race years are 1977, 1982, 1987, and 1992.  The unit of observation is 2-digit SIC

 industry × county × year.  
The m

odels in all colum
ns include county fixed effects, year fixed effects, the count of pre-1958 patents in a county × year fixed effects, state × year fixed effects, and industry fixed effects. A

ll m
odels 

have 26,862 2-digit SIC
 industry × county × year observations, 20 2-digit SIC

 industries, and 791 county observations. 
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N
otes: This table is analogous to Table 3, except that the sam

ple of counties excludes those locations w
ith m

ore than the 75
th percentile level of pre-1958 patents and less than the 25

th percentile of pre-
1958 patents. D

ata are draw
n from

 N
ational Intelligence Estim

ates, C
ensus of M

anufactures, and U
nited States Patent and Tradem

ark data from
 1947 to 1992, as described in the data appendix.  Each 

colum
n in the table reports the results from

 estim
ating one version of equation (2) in the text.  Space Place

i,<1958 is an indicator variable reflecting a county’s being above m
edian in term

s of the sim
ilarity 

betw
een the technologies present in its pre-1958 patents and the N

ational Intelligence Estim
ates of Soviet Space C

apabilities betw
een 1958 and 1992, as described in the text and appendix.  Space R

ace 
years are 1963, 1967 and 1972.  Post space race years are 1977, 1982, 1987, and 1992.  The unit of observation is 2-digit SIC

 industry × county × year.  The m
odels in colum

ns (1) and (5) includes 
county and year fixed effects, and the count of pre-1958 patents in a county × year fixed effects.  The m

odels in colum
ns (2) and (6) also include state × year fixed effects; colum

ns (3) and (7) also 
include industry fixed effects; and the m

odels in colum
ns (4) and (8) further include industry × year fixed effects.  Standard errors are clustered at the 2-digit SIC

 industry-county level.  M
odels in 

colum
ns (1) and (5) have 13,468 2-digit SIC

 industry × county × year observations, 20 2-digit SIC
 industry, and 245 county observations. M

odels in colum
ns (2)-(4) and (6)-(8) have 13,453 2-digit SIC

 
industry × county × year observations, 20 2-digit SIC

 industry, and 244 county observations.   
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N
otes:  D

ata are draw
n from

 N
ational Intelligence Estim

ates, C
ensus of M

anufactures, and U
nited States Patent and Tradem

ark data from
 1947 to 1992, as described in the data appendix.  Each colum

n 
in the table reports the results from

 estim
ating one version of equation (2) in the text.  H

igh O
w

n-Industry Space Score
ij,<1958 is an indicator variable reflecting a county’s being above m

edian in term
s of 

the sim
ilarity betw

een the technologies in pre-1958 patents and the N
ational Intelligence Estim

ates of Soviet Space C
apabilities betw

een 1958 and 1992 in industry j, as described in the text.  H
igh 

O
ther-Industry Space Score

ij,<1958 is an indicator variable reflecting a county’s being above m
edian in term

s of the sim
ilarity betw

een the technologies in pre-1958 patents and the N
ational Intelligence 

Estim
ates of Soviet Space C

apabilities betw
een 1958 and 1992 in industries other than j, as described in the text.   Space R

ace years are 1963, 1967 and 1972.  Post-Space R
ace years are 1977, 1982, 

1987, and 1992.  The unit of observation is 2-digit SIC
 industry × county × year.  The m

odels in all colum
ns include county and year fixed effects, the count of pre-1958 patents in a county × year fixed 

effects, state × year fixed effects, and industry fixed effects.  Standard errors are clustered at the 2-digit SIC
 industry - state level.  A

ll m
odels have 22,878 2-digit SIC

 industry × county × year 
observations, 19 2-digit SIC

 industry, and 605 county observations. 
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N
otes: This table is analogous to Table 3, except that the sam

ple of counties excludes those locations w
ith m

ore than the 75
th percentile level of pre-1958 patents and less than the 25

th percentile of pre-
1958 patents and that the dependent variables are not in logs.  D

ata are draw
n from

 N
ational Intelligence Estim

ates, C
ensus of M

anufactures, and U
nited States Patent and Tradem

ark data from
 1947 to 

1992, as described in the data appendix.  Each colum
n in the table reports the results from

 estim
ating one version of equation (2) in the text.  Space Place

i,<1958 is an indicator variable reflecting a county’s 
being above m

edian in term
s of the sim

ilarity betw
een the technologies present in its pre-1958 patents and the N

ational Intelligence Estim
ates of Soviet Space C

apabilities betw
een 1958 and 1992, as 

described in the text and appendix.  Space R
ace years are 1963, 1967 and 1972.  Post space race years are 1977, 1982, 1987, and 1992.  The unit of observation is 2-digit SIC

 industry × county × year.  
The m

odels in colum
ns (1) and (5) includes county and year fixed effects, and the count of pre-1958 patents in a county × year fixed effects.  The m

odels in colum
ns (2) and (6) also include state × year 

fixed effects; colum
ns (3) and (7) also include industry fixed effects; and the m

odels in colum
ns (4) and (8) further include industry × year fixed effects.  Standard errors are clustered at the 2-digit SIC

 
industry-county level. M

odels in colum
ns (1) and (5) have 13,468 2-digit SIC

 industry × county × year observations, 20 2-digit SIC
 industry, and 245 county observations. M

odels in colum
n (2)-(4) and 

(6)-(8) have 13,453 2-digit SIC
 industry × county × year observations, 20 2-digit SIC

 industry, and 244 county observations.   
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N
otes: Source: A

uthors’ C
alculation from

 N
ational Intelligence Estim

ate, M
anufacturing C

ensus D
ata, and U

nited States Patent and Tradem
ark data from

 1947 to 1992, as described in the data 
appendix.  Each colum

n in the table reports the results from
 estim

ating one version of equation (3) in the text.  Space Place
i,<1958 is an indicator variable reflecting a county being above m

edian in term
s 

of the sim
ilarity betw

een the technologies in pre-1958 patents and the N
ational Intelligence Estim

ates of Soviet Space C
apabilities betw

een 1958 and 1992, as described in the text and appendix table 
A

1.  Space race years are 1963, 1967 and 1972.  Post space race years are 1977, 1982, 1987, and 1992.  The unit of observation is 2 digit SIC
 industry × county × year.  A

ll m
odels includes county, year 

fixed effects, the count of pre-1958 patents in a county × year fixed effects, state × year fixed effects, and include industry fixed effects.  Standard errors are clustered at the 2 digit SIC
 industry-county 

level.  A
ll m

odels have 26,862 2 digit SIC
 industry × county × year observations, 20 2 digit SIC

 industry, and 791 county observations. 
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TABLE A13: Space Places, Value Added, and Employment – Dynamic Models 

Dependent Variable = Log(Value Added) Log(Employment) 
 (1) (2) 
   
Space Placei,<1958 × Year=1947t 0.00 

(0.07) 
-0.01 
(0.06) 

Space Placei,<1958 × Year=1954t -0.01 
(0.05) 

0.00 
(0.05) 

Space Placei,<1958 × Year=1958t 0 
 

0 

Space Placei,<1958 × Year=1963t 0.04 
(0.03) 

0.04 
(0.03) 

Space Placei,<1958 × Year=1967t 0.06 
(0.03) 

0.07 
(0.03) 

Space Placei,<1958 × Year=1972t 0.07 
(0.03) 

0.08 
(0.03) 

Space Placei,<1958 × Year=1977t 0.12 
(0.04) 

0.13 
(0.03) 

Space Placei,<1958 × Year=1982t 0.14 
(0.04) 

0.13 
(0.03) 

Space Placei,<1958 × Year=1987t 0.14 
(0.04) 

0.13 
(0.04) 

Space Placei,<1958 × Year=1992t 0.16 
(0.04) 

0.14 
(0.04) 

   
County Fixed Effects Y Y 
Year Fixed Effects Y Y 
Pre-1958 Patents × Year Fixed Effects Y Y 
State × Year Fixed Effects Y Y 
Industry Fixed Effects  Y Y 
   
R2 0.50 0.46 
Notes: Data are drawn from National Intelligence Estimates, Census of Manufactures, and United States Patent and Trademark data from 1947 to 

1992, as described in the data appendix. Each column in the table reports the results from estimating one version of equation (4) in the text.  

Space Placei,<1958 is an indicator variable reflecting a county being above median in terms of the similarity between the technologies in pre-1958 

patents and the National Intelligence Estimates of Soviet Space Capabilities between 1958 and 1992, as described in the text.  The omitted year 

interaction is 1958.  The unit of observation is 2-digit SIC industry × county × year.  Standard errors are clustered at the 2-digit SIC industry-

county level.  The models in all columns include county fixed effects, year fixed effects, the count of pre-1958 patents in a county × year fixed 

effects, state × year fixed effects, and industry fixed effects.  Models in all columns have 26,862 2-digit SIC industry × county × year 

observations, 20 2-digit SIC industry, and 791 county observations.   
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N
otes: T

his table is analogous to T
able 7 in the m

ain paper, except that the sam
ple is those in the top 5%

 of the lifetim
e patent distribution. D

ata are draw
n from

 N
ational Intelligence E

stim
ates, U

nited 
States Patent and T

radem
ark and A

kcigit, G
rigsby, N

icholas, and Stantcheva (2022) data from
 1947 to 1992, as described in the data appendix.  E

ach colum
n in the table reports the results from

 
estim

ating one version of equation (6) in the text.  S
pace P

lace D
ifference

ij,<1958 is an indicator variable reflecting a county pair being above m
edian in term

s of the sim
ilarity betw

een the counties’ pre-
Sputnik space related patents, as described in the text.  τij  is a m

easure of travel costs betw
een county i and j as com

puted by Jaw
orski and K

itchens (2019).   Space R
ace years are 1963, 1967 and 1972.  

Post-Space R
ace years are 1977, 1982, 1987, and 1992.  T

he unit of observation is origin county ×
 destination county ×

 application year.  T
he m

odels in colum
ns (1) and (2) include county fixed effects 

and year fixed effects; colum
n (3) further adds the count of pre-1958 patents in a county ×

 year fixed effects and county-pair fixed effects; and colum
n (4) adds state x year fixed effects. Standard 

errors w
ith three-w

ay clustering by origin county
×

year, destination county
×

year, and county-pair are in parentheses.  All m
odels have 83,140 origin-county ×

 destination-county ×
 

application year observations and 790 county observations. 
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 TA

BLE A
15: Space Places and Patent Inventor M

igration – Top 50%
 Inventors 

D
ependent V

ariable = 
Log(O

ut M
igration Ratio) 

 
(1) 

(2) 
(3) 

 
 

 
 

Space Score D
ifference

od,<1958 × Space Race
t 

0.09 
(0.06) 

0.10 
(0.06) 

0.15 
(0.06) 

Space Score D
ifference

od,<1958 × Post-Space Race
t  

0.34 
(0.09) 

0.36 
(0.09) 

0.40 
(0.09) 

Corporate Incom
e Tax Rate (1-CIT)ijt  

 
0.07 

(0.28) 
 

Personal A
verage Incom

e Tax Rate, 90
th percentile (1-A

TR)ijt  
 

1.04 
(0.21) 

 

R&
D

 Credit (1+credit)ijt 
  

 
0.00 

(0.02) 
 

O
rigin County Fixed Effects 

Y
 

Y
 

Y
 

D
estination County Fixed Effects 

Y
 

Y
 

Y
 

Y
ear Fixed Effects 

Y
 

Y
 

Y
 

O
rigin Pre-1958 Patents × Y

ear Fixed Effects 
Y

 
Y

 
Y

 
D

estination Pre-1958 Patents × Y
ear Fixed Effects 

Y
 

Y
 

Y
 

O
rigin County × D

estination County Fixed Effects 
Y

 
Y

 
Y

 
O

rigin State × Y
ear Fixed Effects 

 
 

Y
 

D
estination State × Y

ear Fixed Effects 
 

 
Y

 
R

2 
0.90 

0.90 
0.91 

N
otes: T

his table is analogous to T
able 7 in the m

ain paper, except that except that the sam
ple is those in the top 50%

 of the lifetim
e patent distribution. D

ata are draw
n from

 N
ational Intelligence 

E
stim

ates, U
nited S

tates Patent and T
radem

ark and A
kcigit, G

rigsby, N
icholas, and Stantcheva (2022) data from

 1947 to 1992, as described in the data appendix.  E
ach colum

n in the table reports the 
results from

 estim
ating one version of equation (6) in the text.  Space Place D

ifference
ij,<1958 is an indicator variable reflecting a county pair being above m

edian in term
s of the sim

ilarity betw
een the 

counties’ pre-Sputnik space related patents, as described in the text.  τij  is a m
easure of travel costs betw

een county i and j as com
puted by Jaw

orski and K
itchens (2019).   S

pace R
ace years are 1963, 

1967 and 1972.  P
ost-Space R

ace years are 1977, 1982, 1987, and 1992.  T
he unit of observation is origin county ×

 destination county ×
 application year.  T

he m
odels in colum

ns (1) and (2) include 
county fixed effects and year fixed effects; colum

n (3) further adds the count of pre-1958 patents in a county ×
 year fixed effects and county-pair fixed effects; and colum

n (4) adds state x year fixed 
effects. Standard errors w

ith three-w
ay clustering by origin county

×
year, destination county

×
year, and county-pair are in parentheses.  All m

odels have 83,140 origin-county ×
 destination-

county ×
 application year observations and 790 county observations. 

  


